\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{null subset} \hypertarget{null_and_full_sets}{}\section*{{Null and full sets}}\label{null_and_full_sets} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{in_a_measure_space}{In a measure space}\dotfill \pageref*{in_a_measure_space} \linebreak \noindent\hyperlink{in_untraditional_measurable_spaces}{In untraditional measurable spaces}\dotfill \pageref*{in_untraditional_measurable_spaces} \linebreak \noindent\hyperlink{in_smooth_manifolds}{In smooth manifolds}\dotfill \pageref*{in_smooth_manifolds} \linebreak \noindent\hyperlink{logic_of_fullnull_sets}{Logic of full/null sets}\dotfill \pageref*{logic_of_fullnull_sets} \linebreak ([[null set|Null set]] redirects here; for the notion in set theory, see [[empty set]].) \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[measure theory]], a \emph{null set} is a [[subset]] of a [[measure space]] (or [[measurable space]]) that is so small that it can be neglected: it might as well be the [[empty subset]]; its measure is [[zero]]. Similarly, a \emph{full set} is a subset that is so large that it might as well be the [[improper subset]] (the entire space). One also says that a null set has \emph{null measure} and a full set has \emph{full measure}. Traditionally, full sets are not usually referred to explicitly; in [[classical mathematics]], they are simply the [[complements]] of null sets. However, they are often referred to implicitly through such terminology as `almost everywhere'. Also, in [[constructive mathematics]], full sets are more fundamental than null sets; they are not simply the complements of the latter. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} The definitions depend on the context. \hypertarget{in_a_measure_space}{}\subsubsection*{{In a measure space}}\label{in_a_measure_space} In a traditional [[measure space]], we have an abstract [[set]] $X$, a $\sigma$-[[sigma-algebra|algebra]] (or similar structure) $\mathcal{M}$ consisting of the [[measurable subsets]] of $X$, and a [[measure]] $\mu$ mapping each measurable set $A$ to a [[real number]] (or similar quantity) $\mu(A)$, the measure of $A$. A measurable subset $B$ of $X$ is \textbf{full} if, given any measurable set $A$, $\mu(A \cap B) = \mu(A)$; an arbitrary subset of $X$ is \textbf{full} if it's a [[superset]] of a full measurable set. [[de Morgan duality|Dually]], a measurable set $B$ is \textbf{null} if, given any measurable set $A$, $\mu(A \cup B) = \mu(A)$; an arbitrary subset of $X$ is \textbf{null} if it's a [[subset]] of a null measurable set. Some equivalent characterisations ([[constructive mathematics|constructively]] valid for measures on [[Cheng spaces]] except as stated): \begin{itemize}% \item A measurable set $B$ is null iff $\mu(C) = 0$ for every measurable subset of $B$. \item If $\mu$ is a [[positive measure]], then a measurable set $B$ is null iff $\mu(B) = 0$. \item If $\mu$ is a [[finite measure]] with total measure $I$, then a measurable set $B$ is full iff $\mu(C) = I$ for every measurable superset of $B$. \item If $\mu$ is both positive and finite (so a [[probability measure]] up to rescaling), then a measurable set $B$ is full iff $\mu(B) = I$. \item If $\mu$ is [[complete measure|complete]], then every null set is measurable and every full set is measurable (which is basically the definition of `complete') and consequently the preceding properties continue to hold when the adjective `measurable' is removed. \item Using [[excluded middle]], a set is null iff its complement is full, and a set is full iff its complement is null. (Even constructively, if a set is null, then its complement is full.) \item Even constructively, a measurable set is null iff its measurable complement (the complement in the algebraic structure of complemented pairs in a Cheng measurable space) is full, and a measurable set is full iff its measurable complement is null. \end{itemize} \hypertarget{in_untraditional_measurable_spaces}{}\subsubsection*{{In untraditional measurable spaces}}\label{in_untraditional_measurable_spaces} Traditionally, a [[measurable space]] is simply an abstract [[set]] $X$ and a $\sigma$-[[sigma-algebra|algebra]] (or similar structure) $\mathcal{M}$ consisting of the [[measurable subsets]] of $X$. There is no notion of null or full subsets of such a space. However, there are two (essentially equivalent) variations of this concept in which null and full subsets do make sense. One variation is to simply equip the space with a $\delta$-[[delta-filter|filter]] of measurable subsets, which are declared to be the full measurable subsets. Then a general \textbf{full subset} is a superset of a measurable full subset, and a \textbf{null subset} is any set whose complement is full. (Alternatively, equip the space with a $\sigma$-[[sigma-ideal|ideal]] of measurable subsets, which are declared to be the null measurable subsets.) In particular, a [[localizable measurable space]] is a measurable space so equipped such that the [[Boolean algebra]] of measurable sets modulo null sets (or modulo full sets if this is done by identifying the full sets with $X$) is [[complete boolean algebra|complete]]. Another variation, used especially in [[constructive mathematics]], is a [[Cheng measurable space]]. This consists of a set $X$ equipped with a $\sigma$-semialgebra of [[disjoint subsets|disjoint]] \emph{pairs} of subsets of $X$, declared to be the \emph{complemented pairs}. A set is measurable iff it appears as one component of a complemented pair. A measurable subset is \emph{full} if it appears as one component of a complemented pair whose other component is [[empty subset|empty]], or equivalently (given the structure of the algebra of complemented pairs) if it is the [[union]] of the two components of any complemented pair. Then a general \textbf{full subset} is a superset of a measurable full subset, and a \textbf{null subset} is any set whose complement is full. These are actually equivalent concepts. Given a measurable space equipped with a $\delta$-filter of measurable full subsets, define a complemented pair to be a pair of disjoint measurable subsets whose union is full. Conversely, given a Cheng measurable space, the measurable subsets and measurable full subsets as defined above comprise a $\sigma$-algebra and a $\delta$-filter in it. (But constructively, the algebra of measurable subsets, while closed under the appropriate operations, will generally not be a [[boolean algebra]].) \hypertarget{in_smooth_manifolds}{}\subsubsection*{{In smooth manifolds}}\label{in_smooth_manifolds} A subset $A$ of an $n$-dimensional [[smooth manifold]] $X$ is \textbf{null} or \textbf{full} (respectively) if its [[preimage]] under every [[coordinate chart]] is a null or full subset (respectively) of the chart's domain (which is an [[open subset]] of the [[Cartesian space]] $\mathbb{R}^n$) under [[Lebesgue measure]]. This is actually better behaved than it may at first seem. If $A$ is [[open cover|covered]] by an [[atlas]] $(\phi_i\colon U_i \to X)_i$, then $A$ is null or full as soon as $\phi_i^*(A)$ is null/full in $U_i$ for every index $i$. In particular, if $A$ is contained in a single coordinate chart (which is not very likely for a full set but fairly common for null sets), then it is sufficient to check its preimage under that one. This fact depends on the smoothness and fails for [[topological manifolds]]. As we can define a [[measurable subset]] of a smooth manifold similarly, this means that every smooth manifold gives rise to a measurable space equipped with a $\delta$-filter of full subsets (and hence to a Cheng measurable space); this space is always localizable. (Details? Is $C^1$ sufficient? Conversely, is paracompactness necessary to keep the covers manageable?) \hypertarget{logic_of_fullnull_sets}{}\subsection*{{Logic of full/null sets}}\label{logic_of_fullnull_sets} A property of elements of $X$ (given by a [[subset]] $S$ of $X$) can be considered modulo null sets. We say that the property $\phi$ is true \textbf{almost everywhere} or \textbf{almost always} if it is true on some full set, that is if $\{X | \phi\}$ is full. Dually, we say that $\phi$ is true \textbf{almost nowhere} or \textbf{almost never} if $\{X | \phi\}$ is null. It is better to use the [[negation]] of `almost nowhere', although the terminology for this is not really standard; say that $\phi$ is true \textbf{somewhere significant} if $\{X | \phi\}$ is non-null. Note that being true almost everywhere is a weakening of being true everywhere (given by the [[universal quantifier]] $\forall$), while being true somewhere significant is a strengthening of being true somewhere (given by the [[particular quantifier]] $\exists$). Indeed we can build a logic out of these. Use $\ess\forall i, \phi[i]$ or $\ess\forall \phi$ to mean that a [[predicate]] $\phi$ on $X$ is true almost everywhere, and use $\ess\exists i, \phi[i]$ or $\ess\exists \phi$ to mean that $\phi$ is true somewhere significant. Then we have: \begin{displaymath} \forall \phi \;\Rightarrow\; \ess\forall \phi \end{displaymath} \begin{displaymath} \ess\exists \phi \;\Rightarrow\; \exists \phi \end{displaymath} \begin{displaymath} \ess\forall (\phi \wedge \psi) \;\Leftrightarrow\; \ess\forall \phi \wedge \ess\forall \psi \end{displaymath} \begin{displaymath} \ess\exists (\phi \wedge \psi) \;\Rightarrow\; \ess\exists \phi \wedge \ess\exists \psi \end{displaymath} \begin{displaymath} \ess\forall (\phi \vee \psi) \;\Leftarrow\; \ess\forall \phi \wedge \ess\forall \psi \end{displaymath} \begin{displaymath} \ess\exists (\phi \vee \psi) \;\Leftrightarrow\; \ess\exists \phi \vee \ess\exists \psi \end{displaymath} \begin{displaymath} \ess\forall \neg{\phi} \;\Leftrightarrow\; \neg\ess\exists \phi \end{displaymath} and other analogues of theorems from [[predicate logic]]. Note that the last item listed requires [[excluded middle]] even though its analogue from ordinary predicate logic does not. A similar logic is satisfied by `[[eventually]]' and its dual (`frequently') in [[filters]] and [[nets]]. [[!redirects null set]] [[!redirects null sets]] [[!redirects null subset]] [[!redirects null subsets]] [[!redirects null measure]] [[!redirects set of null measure]] [[!redirects sets of null measure]] [[!redirects subset of null measure]] [[!redirects subsets of null measure]] [[!redirects full set]] [[!redirects full sets]] [[!redirects full subset]] [[!redirects full subsets]] [[!redirects full measure]] [[!redirects set of full measure]] [[!redirects sets of full measure]] [[!redirects subset of full measure]] [[!redirects subsets of full measure]] [[!redirects almost everywhere]] [[!redirects almost nowhere]] [[!redirects somewhere significant]] \end{document}