\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{off-shell Poisson bracket} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{symplectic_geometry}{}\paragraph*{{Symplectic geometry}}\label{symplectic_geometry} [[!include symplectic geometry - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{on_paths_in_a_symplectic_manifold}{On paths in a symplectic manifold}\dotfill \pageref*{on_paths_in_a_symplectic_manifold} \linebreak \noindent\hyperlink{the_trajectory_space_of_a_symplectic_manifold}{The trajectory space of a symplectic manifold}\dotfill \pageref*{the_trajectory_space_of_a_symplectic_manifold} \linebreak \noindent\hyperlink{hamiltonian_evolution}{Hamiltonian evolution}\dotfill \pageref*{hamiltonian_evolution} \linebreak \noindent\hyperlink{TheOffShellPoissonBracketOnSpaceOfPathsInSymplecticManifold}{The off-shell Poisson bracket}\dotfill \pageref*{TheOffShellPoissonBracketOnSpaceOfPathsInSymplecticManifold} \linebreak \noindent\hyperlink{the_symplectic_leaves}{The symplectic leaves}\dotfill \pageref*{the_symplectic_leaves} \linebreak \noindent\hyperlink{BoundaryFieldTheoryInterpretation}{Boundary field theory interpretation}\dotfill \pageref*{BoundaryFieldTheoryInterpretation} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Given a [[symplectic manifold]] $(X,\omega)$ and given a [[Hamiltonian]] [[function]] $H \colon X \longrightarrow \mathbb{R}$, there is a [[Poisson bracket]] on an [[algebra of functions]] on the [[smooth space|smooth]] [[path space]] $[I,X]$ -- the ``space of histories'' or ``space of [[trajectories]]'' -- for $I = [0,1]$ the closed [[interval]], which is such that its [[symplectic leaves]] are each a copy of $X$, but regarded as the space of initial conditions for evolution with respect to $H$ with a [[source]] term added. The first statement was first observed for the [[Peierls bracket]] of [[local prequantum field theory]] in (\hyperlink{Marolf93}{Marolf 93, section II}), but the construction there is not specific to the [[Peierls bracket]]. That the construction provides a [[foliation]] of trajectory space by [[symplectic leaves]] labeled by [[level sets]] of the [[Euler-Lagrange equation|Euler-Lagrange function]] was explicitly pointed out at (\hyperlink{BrunettiFredenhagenRibeiro12}{Brunetti-Fredenhagen-Ribeiro 12, top of p. 4}). (Again for the [[Peierls bracket]], but the statement holds more generally.) These references and that this means a symplectic foliation by [[source]] terms was highlighted out by (\hyperlink{Khavkine13}{Khavkine 13}). \hypertarget{on_paths_in_a_symplectic_manifold}{}\subsection*{{On paths in a symplectic manifold}}\label{on_paths_in_a_symplectic_manifold} We describe here the [[off-shell]] Poisson bracket in the context of [[mechanics]], hence for [[mechanical systems]] with [[finite set|finite]]-[[dimension|dimensional]] [[phase space]]. The basic idea is that sketched in (\hyperlink{Marolf93}{Marolf 93, section II}), but we try to make it precise. Then we similarly look into the [[foliation]] by [[symplectic leaves]] as suggested by (\hyperlink{Khavkine13}{Khavkine 13}). \hypertarget{the_trajectory_space_of_a_symplectic_manifold}{}\subsubsection*{{The trajectory space of a symplectic manifold}}\label{the_trajectory_space_of_a_symplectic_manifold} Let $(X,\omega)$ be a [[symplectic manifold]]. We write \begin{displaymath} \{-,-\} \;\colon\; C^\infty(X)\otimes C^\infty(X) \longrightarrow C^\infty(X) \end{displaymath} for the [[Poisson bracket]] induced by the [[symplectic form]] $\omega$, hence by the [[Poisson bivector]] $\pi \coloneqq \omega^{-1}$. For notational simplicity we will restrict attention to the special case that \begin{displaymath} X = \mathbb{R}^2 \simeq T^\ast \mathbb{R} \end{displaymath} with canonical [[coordinates]] \begin{displaymath} q,p \;\colon\; \mathbb{R}^2 \longrightarrow \mathbb{R} \end{displaymath} and symplectic form \begin{displaymath} \omega = \mathbf{d}q \wedge \mathbf{d}p \,. \end{displaymath} The general case of the following discussion is a straightforward generalization of this, which is just notationally more inconvenient. Write $I \coloneqq [0,1]$ for the standard [[interval]] regarded as a [[smooth manifold]] [[manifold with boundary|with boundary]]. The [[mapping space]] \begin{displaymath} P X \coloneqq [I, X] \end{displaymath} canonically exists as a [[smooth space]], but since $I$ is [[compact topological space|compact]] this structure canonically refines to that of a [[Fréchet manifold]] (see at \emph{[[manifold structure of mapping spaces]]}). This implies that there is a good notion of [[tangent space]] $T P X$. The task now is to construct a certain [[Poisson bivector]] as a [[section]] $\pi \in \Gamma^{\wedge 2}(T P X)$. Among the [[smooth functions]] on $P X$ are the [[evaluation maps]] \begin{displaymath} ev \;\colon\; P X \times I = [I,X] \times I \stackrel{}{\longrightarrow} X \end{displaymath} whose components we denote, as usual, for $t \in I$ by \begin{displaymath} q(t) \coloneqq q \circ ev_t \;\colon\; P X \longrightarrow \mathbb{R} \end{displaymath} and \begin{displaymath} p(t) \coloneqq p \circ ev_t \;\colon\; P X \longrightarrow \mathbb{R} \,. \end{displaymath} Generally for $f \colon X \to \mathbb{R}$ any [[smooth function]], we write $f(t) \coloneqq f \circ ev_t \in C^\infty(P X)$. This defines an embedding \begin{displaymath} C^\infty(X) \times I \hookrightarrow C^\infty(P X) \,. \end{displaymath} Similarly we have \begin{displaymath} \dot q(t) \;\colon\; P X \longrightarrow \mathbb{R} \end{displaymath} and \begin{displaymath} \dot q(t) \;\colon\; P X \longrightarrow \mathbb{R} \end{displaymath} obtained by [[differentiation]] of $t \mapsto q(t)$ and $t \mapsto p(t)$. \hypertarget{hamiltonian_evolution}{}\subsubsection*{{Hamiltonian evolution}}\label{hamiltonian_evolution} Let now \begin{displaymath} H \;\colon\; X \times I \longrightarrow \mathbb{R} \end{displaymath} be a [[smooth function]], to be regarded as a time-dependent [[Hamiltonian]]. This induces a time-dependent function on trajectory space, which we denote by the same symbol \begin{displaymath} H \;\colon\; P X \times I \stackrel{(ev,id)}{\longrightarrow} X \times X \stackrel{H}{\longrightarrow} \mathbb{R} \,. \end{displaymath} Hence for $t \in I$ we write \begin{displaymath} H(t) \;\colon\; P X \times \{t\} \stackrel{(ev, id)}{\longrightarrow} X \times \{t\} \stackrel{H}{\longrightarrow} \mathbb{R} \end{displaymath} for the function that assigns to a trajectors $(q(-),p(-)) \colon I \longrightarrow X$ its [[energy]] at (time) parameter value $t$. Define then the [[Euler-Lagrange equation|Euler-Lagrange density]] induced by $H$ to be the functions \begin{displaymath} EL(t) \;\colon\; P X \longrightarrow \mathbb{R}^2 \end{displaymath} with components \begin{displaymath} EL(t) = \left( \itexarray{ \dot q(t) - \frac{\partial H}{\partial p}(t) \\ \dot p(t) + \frac{\partial H}{\partial p}(t) } \right) \,. \end{displaymath} The [[trajectories]] $\gamma \colon I \to X$ on which $EL(t)$ vanishes for all $t \in I$ are equivalently those \begin{itemize}% \item for which the [[tangent vector]] $\dot \gamma \in T_{\gamma}X$ is a [[Hamiltonian vector field|Hamiltonian vector]] for $H$; \item which satisfy [[Hamilton's equations]] [[equations of motion|of motion]] for $H$. \end{itemize} Since the [[differential equations]] $EL = 0$ have a unique solution for given initial data $(q(0), p(0))$, the evaluation map \begin{displaymath} \left\{ \gamma \in P X | \forall_{t \in I}\; EL_\gamma(t) = 0 \right\} \stackrel{\gamma \mapsto \gamma(0)}{\longrightarrow} X \end{displaymath} is an [[equivalence]] (an [[isomorphism]] of [[smooth spaces]]). \hypertarget{TheOffShellPoissonBracketOnSpaceOfPathsInSymplecticManifold}{}\subsubsection*{{The off-shell Poisson bracket}}\label{TheOffShellPoissonBracketOnSpaceOfPathsInSymplecticManifold} Write \begin{displaymath} Poly(P X) \hookrightarrow C^\infty(P X) \end{displaymath} for the [[subalgebra]] of [[smooth functions]] on [[path space]] which are \begin{itemize}% \item [[polynomials]] \item of [[integrals]] over $I$ \item of the smooth functions in the image of $C^\infty(X) \times I \hookrightarrow C^\infty(P X)$ \item and all their [[derivatives]] along $I$. \end{itemize} Define a [[bilinear function]] \begin{displaymath} \{-,-\} \;\colon\; Poly(P X) \otimes Poly(P X) \longrightarrow Poly(P X) \end{displaymath} as the unique function which is a [[derivation]] in both arguments and moreover is a solution to the [[differential equations]] \begin{displaymath} \frac{\partial}{\partial t_2} \left\{f(t_1), q(t_2)\right\} = \left\{ f(t_1), \frac{\partial H}{\partial p}(t_2) \right\} \end{displaymath} \begin{displaymath} \frac{\partial}{\partial t_2} \left\{f(t_1), p(t_2)\right\} = - \left\{ f(t_1), \frac{\partial H}{\partial q}(t_2) \right\} \end{displaymath} subject to the initial conditions \begin{displaymath} \{f(t), q(t)\} = \{f,q\} \end{displaymath} \begin{displaymath} \{f(t), p(t)\} = \{f,p\} \end{displaymath} for all $t \in I$, where on the right we have the original [[Poisson bracket]] on $X$. This bracket directly inherits skew-symmetry and the [[Jacobi identity]] from the [[Poisson bracket]] of $(X, \omega)$, hence equips the [[vector space]] $Poly(P X)$ with the structure of a [[Lie bracket]]. Since it is by construction also a [[derivation]] of $Poly(P X)$ as an [[associative algebra]], we have that \begin{displaymath} \left( Poly\left(P X\right), \; \left\{ -,- \right\} \right) \;\;\; \in P_1 Alg \end{displaymath} is a [[Poisson algebra]]. This is the ``off-shell Poisson algebra'' on the space of [[trajectories]] in $(X,\omega)$. \hypertarget{the_symplectic_leaves}{}\subsubsection*{{The symplectic leaves}}\label{the_symplectic_leaves} Observe that by construction of the off-shell Poisson bracket, specifically by the [[differential equations]] defining it, the [[Euler-Lagrange equation|Euler-Lagrange function]] $EL$ generate a [[Poisson reduction|Poisson ideal]]. For instance \begin{displaymath} \left( \itexarray{ \frac{\partial}{\partial t_2} \left\{f(t_1), q(t_2)\right\} &=& \left\{ f(t_1), \frac{\partial H}{\partial p}(t_2) \right\} \\ \frac{\partial}{\partial t_2} \left\{f(t_1), p(t_2)\right\} &=& - \left\{ f(t_1), \frac{\partial H}{\partial q}(t_2) \right\} } \right) \;\;\; \Leftrightarrow \;\;\; \left( \left\{ f(t_1), \; EL(t) \right\} = 0 \right) \,. \end{displaymath} Moreover, since $\{EL(t) = 0\}$ are [[equations of motion]] the [[Poisson reduction]] defined by this Poisson idea is the subspace of those [[trajectories]] which are solutions of [[Hamilton's equations]], hence the ``on-shell trajectories''. As remarked above, the initial value map canonically identifies this on-shell trajectory space with the original [[phase space]] manifold $X$. Moreover, by the very construction of the off-shell Poisson bracket as being the original Poisson bracket at equal times, hence in particular at time $t = 0$, it follows that restricted to the [[zero locus]] $EL = 0$ the off-shell Poisson bracket becomes [[symplectic manifold|symplectic]]. All this clearly remains true with the function $EL$ replaced by the function $EL - J$, for $J \in C^\infty(I)$ any function of the (time) parameter (since $\{J,-\} = 0$). Any such choice of $J$ hence defines a symplectic subspace \begin{displaymath} \left\{ \gamma \in P X \;|\; \forall_{t \in I}\; EL_\gamma(t) = J \right\} \end{displaymath} of the off-shell Poisson structure on trajectory space. Hence $\left(O X, \left\{-,-\right\}\right)$ has a [[foliation]] by [[symplectic leaves]] with the [[leaf space]] being the [[smooth space]] $C^\infty(I)$ of [[smooth functions]] on the interval. Notice that changing $EL \mapsto EL - J$ corresponds changing the time-dependent [[Hamiltonian]] $H$ as \begin{displaymath} H \mapsto H - J q \,. \end{displaymath} Such a term linear in the [[canonical coordinates]] (the [[field (physics)|fields]]) is a \emph{[[source]] term}. (The [[action functionals]] with such [[source]] terms added serve as [[integrands]] of [[generating functions]] for [[correlators]] in [[statistical mechanics]] and in [[quantum mechanics]].) \hypertarget{BoundaryFieldTheoryInterpretation}{}\subsubsection*{{Boundary field theory interpretation}}\label{BoundaryFieldTheoryInterpretation} Hence in conclusion we find the following statement: The [[trajectory]] space (history space) of a [[mechanical system]] carries a natural [[Poisson manifold|Poisson structure]] whose [[symplectic leaves]] are the subspaces of those trajectories which satisfy the [[equations of motion]] with a fixed [[source]] term and hence whose symplectic [[leaf space]] is the space of possible sources. Notice what becomes of this statement as we consider the the [[2d Chern-Simons theory]] induced by the off-shell Poisson bracket (the [[non-perturbative field theory|non-perturbative]] [[Poisson sigma-model]]) whose [[moduli stack]] of [[field (physics)|fields]] is the [[symplectic groupoid]] $SG\left(P X, \left\{-,-\right\}\right)$ induced by the Poisson structure. By the discussion at [[motivic quantization]] in the section \emph{\href{motivic%20quantization#PoissonManifoldAtTheBoundaryOf2dChernSimonsTheory}{The Poisson manifold at the boundary of the 2d Chern-Simons theory}}, the Poisson space $\left(P X, \left\{-,-\right\}\right)$ defines a [[boundary field theory]] (in the sense of [[local prequantum field theory]]) for this [[2d Chern-Simons theory]], exhibited by a boundary [[correspondence]] of the form \begin{displaymath} \itexarray{ && P X \\ & \swarrow && \searrow \\ \ast && \swArrow_{\xi} && SG\left(P X, \left\{-,-\right\}\right) \\ & \searrow && \swarrow_{\mathrlap{\chi}} \\ && \mathbf{B}^2 U(1) \\ && \downarrow^{\mathrlap{\rho}} \\ && KU Mod } \,. \end{displaymath} Notice that the [[symplectic groupoid]] is a version of the [[symplectic leaf|symplectic]] [[leaf space]] of the given [[Poisson manifold]] (its [[0-truncation]] is exactly the leaf space). Hence in the case of the off-shell Poisson bracket, the [[symplectic groupoid]] is the space of \emph{[[source field|sources]]} of a mechanical system. At the same time it is the [[moduli space]] of [[field (physics)|fields]] of the [[2d Chern-Simons theory]] of which the mechanical system is the [[boundary field theory]]. Hence the [[field (physics)|fields]] of the [[bulk field theory]] are identified with the [[sources]] of the [[boundary field theory]]. Hence conceptually the above boundary correspondence diagram is of the following form \begin{displaymath} \itexarray{ && Fields \\ & \swarrow && \searrow \\ \ast && \swArrow_{} && Sources \\ & \searrow && \swarrow_{\mathrlap{}} \\ && Phases } \,. \end{displaymath} Such a relation \begin{tabular}{l|l} [[bulk field theory]]&[[boundary field theory]]\\ \hline [[field (physics)&field]]\\ \end{tabular} between bulk fields and boundary sources is the characteristic feature of what is called the \emph{[[holographic principle]]} in its realization as the [[AdS-CFT correspondence]]. \hypertarget{references}{}\subsection*{{References}}\label{references} The off-shell extension of the [[Peierls bracket]] is observed in section II of \begin{itemize}% \item [[Don Marolf]], \emph{Poisson Brackets on the Space of Histories} Annals of Physics Volume 236, Issue 2, December 1994, Pages 374-391 (\href{http://arxiv.org/abs/hep-th/9308141}{arXiv:hep-th/9308141}) \end{itemize} The observation that the off-shell bracket has a symplectic foliation by the level sets of the Euler-Lagrange functions appears on the top of p. 4 of \begin{itemize}% \item [[Romeo Brunetti]], [[Klaus Fredenhagen]], [[Pedro Ribeiro]], \emph{Algebraic Structure of Classical Field Theory I: Kinematics and Linearized Dynamics for Real Scalar Fields} (\href{http://arxiv.org/abs/1209.2148}{arXiv:1209.2148}) \end{itemize} All this and the interpretation of the resulting symplectic foliation as a foliation by source terms has been highlighted by \begin{itemize}% \item [[Igor Khavkine]], personal communication \end{itemize} [[!redirects off-shell Poisson brackets]] \end{document}