\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{one-point compactification} . \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{for_topological_spaces}{For topological spaces}\dotfill \pageref*{for_topological_spaces} \linebreak \noindent\hyperlink{for_noncommutative_topological_spaces_algebras}{For non-commutative topological spaces ($C^\ast$-algebras)}\dotfill \pageref*{for_noncommutative_topological_spaces_algebras} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{BasicProperties}{Basic properties}\dotfill \pageref*{BasicProperties} \linebreak \noindent\hyperlink{UniversalProperty}{Universal property}\dotfill \pageref*{UniversalProperty} \linebreak \noindent\hyperlink{functoriality}{Functoriality}\dotfill \pageref*{functoriality} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{ExamplesSpheres}{Eculidean spaces compactify to Spheres}\dotfill \pageref*{ExamplesSpheres} \linebreak \noindent\hyperlink{linear_representations_compactify_to_representation_spheres}{Linear representations compactify to representation spheres}\dotfill \pageref*{linear_representations_compactify_to_representation_spheres} \linebreak \noindent\hyperlink{thom_spaces}{Thom spaces}\dotfill \pageref*{thom_spaces} \linebreak \noindent\hyperlink{locally_compact_hausdorff_spaces}{Locally compact Hausdorff spaces}\dotfill \pageref*{locally_compact_hausdorff_spaces} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{one-point compactification} of a [[topological space]] $X$ is a new [[compact space]] $X^* = X \cup \{\infty\}$ obtained by adding a single new point ``$\infty$'' to the original space and declaring in $X^*$ the [[complements]] of the original [[closed subspace|closed]] [[compact space|compact]] [[subspaces]] to be [[open subspace|open]]. One may think of the new point added as the ``point at infinity'' of the original space. A [[continuous function]] on $X$ \emph{[[vanishing at infinity|vanishes at infinity]]} precisely if it extends to a continuous function on $X^*$ and literally takes the value zero at the point ``$\infty$''. This one-point compactification is also known as the \emph{Alexandroff compactification} after a 1924 paper by [[Pavel Aleksandrov|Павел Сергеевич Александров]] (then transliterated `P.S. Aleksandroff'). The one-point compactification is usually applied to a non-[[compact space|compact]] [[locally compact space|locally compact]] [[Hausdorff space|Hausdorff]] space. In the more general situation, it may not really be a [[compactification]] and hence is called the \emph{one-point extension} or \emph{Alexandroff extension}. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{for_topological_spaces}{}\subsubsection*{{For topological spaces}}\label{for_topological_spaces} \begin{defn} \label{OnePointExtension}\hypertarget{OnePointExtension}{} \textbf{(one-point extension)} Let $X$ be any [[topological space]]. Its \textbf{one-point extension} $X^*$ is the topological space \begin{itemize}% \item whose underlying [[set]] is the [[disjoint union]] $X \cup \{\infty\}$ \item and whose [[open sets]] are \begin{enumerate}% \item the open subsets of $X$ (thought of as subsets of $X^*$); \item the [[complements]] $X^\ast \backslash CK = (X \backslash CK) \cup \{\infty\}$ of the [[closed subspace|closed]] [[compact space|compact]] subsets $CK \subset X$. \end{enumerate} \end{itemize} \end{defn} (\hyperlink{Aleksandrov24}{Aleksandrov 24}, see \hyperlink{Kelly75}{Kelly 75, p. 150}) \begin{remark} \label{}\hypertarget{}{} If $X$ is [[Hausdorff space|Hausdorff]], then it is sufficient to speak of compact subsets in def. \ref{OnePointExtension}, since [[compact subspaces of Hausdorff spaces are closed]]. \end{remark} \begin{lemma} \label{OnePointExtensionWellDefined}\hypertarget{OnePointExtensionWellDefined}{} \textbf{(one-point extension is well-defined)} The [[topological space|topology]] on the one-point extension in def. \ref{OnePointExtension} is indeed well defined in that the given set of subsets is indeed closed under arbitrary unions and finite intersections. \end{lemma} \begin{proof} The unions and finite intersections of the open subsets inherited from $X$ are closed among themselves by the assumption that $X$ is a topological space. It is hence sufficient to see that \begin{enumerate}% \item the unions and finite intersection of the $(X \backslash CK) \cup \{\infty\}$ are closed among themselves, \item the union and intersection of a subset of the form $U \underset{\text{open}}{\subset} X \subset X^\ast$ with one of the form $(X \backslash CK) \cup \{\infty\}$ is again of one of the two kinds. \end{enumerate} Regarding the first statement: Under [[de Morgan duality]] \begin{displaymath} \underset{i \in \underset{\text{finite}}{J}}{\bigcap} (X \backslash CK_i \cup \{\infty\}) = \left( X \backslash \left(\underset{i \in \underset{\text{finite}}{J}}{\bigcup} CK_i \right)\right) \cup \{\infty\} \end{displaymath} and \begin{displaymath} \underset{i \in I}{\bigcup} ( X \backslash CK_i \cup \{\infty\} ) = \left(X \backslash \left(\underset{i \in I}{\bigcap} CK_i \right)\right) \cup \{\infty\} \end{displaymath} and so the first statement follows from the fact that finite unions of compact subspaces and arbitrary intersections of closed compact subspaces are themselves again compact (\href{compact+space#UnionsAndIntersectionOfCompactSubspaces}{this prop.}). Regarding the second statement: That $U \subset X$ is open means that there exists a closed subset $C \subset X$ with $U = X\backslash C$. Now using [[de Morgan duality]] we find \begin{enumerate}% \item for intersections: \begin{displaymath} \begin{aligned} U \cap ( (X\backslash CK) \cup \{\infty\} ) & = (X \backslash C) \cap (X \backslash CK) \\ & = X \backslash (C \cup CK). \end{aligned} \end{displaymath} Since finite unions of closed subsets are closed, this is again an open subset of $X$; \item for unions: \begin{displaymath} \begin{aligned} U \cup (X \backslash CK) \cup \{\infty\} & = (X \backslash C) \cup (X \backslash CK) \cup \{\infty\} \\ & = (X \backslash (C \cap CK)) \cup \{\infty\} . \end{aligned} \end{displaymath} For this to be open in $X^\ast$ we need that $C \cap CK$ is again compact. This follows because [[subsets are closed in a closed subspace precisely if they are closed in the ambient space]] and because [[closed subsets of compact spaces are compact]]. \end{enumerate} \end{proof} \hypertarget{for_noncommutative_topological_spaces_algebras}{}\subsubsection*{{For non-commutative topological spaces ($C^\ast$-algebras)}}\label{for_noncommutative_topological_spaces_algebras} Dually in [[non-commutative topology]] the one-point compactification corresponds to the [[unitisation of C\emph{-algebras]].} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{BasicProperties}{}\subsubsection*{{Basic properties}}\label{BasicProperties} We discuss the basic properties of the construction $X^\ast$ in def. \ref{OnePointExtension}, in particular that it always yields a [[compact topological space]] (prop. \ref{OnePointExtensionIsCompact} below) and the ingredients needed to see its [[universal property]] in the Hausdorff case \hyperlink{OnePointExtensionIsCompact}{below}. \begin{prop} \label{OnePointExtensionIsCompact}\hypertarget{OnePointExtensionIsCompact}{} \textbf{(one-point extension is compact)} For $X$ any [[topological space]], we have that its one-point extension $X^\ast$ (def. \ref{OnePointExtension}) is a [[compact topological space]]. \end{prop} \begin{proof} Let $\{U_i \subset X^\ast\}_{i \in I}$ be an [[open cover]]. We need to show that this has a finite subcover. That we have a cover means that \begin{enumerate}% \item there must exist $i_\infty \in I$ such that $U_{i \infty} \supset \{\infty\}$ is an [[open neighbourhood]] of the extra point. But since, by construction, the only open subsets containing that point are of the form $(X \backslash CK) \cup \{\infty\}$, it follows that there is a compact closed subset $CK \subset X$ with $X \backslash CK \subset U_{i \infty}$. \item $\{U_i \subset X\}_{i \in i}$ is in particular an open cover of that closed compact subset $CK \subset X$. This being compact means that there is a finite subset $J \subset I$ so that $\{U_i \subset X\}_{i \in \J \subset X}$ is still a cover of $CK$. \end{enumerate} Together this implies that \begin{displaymath} \{U_i \subset X\}_{i \in J \subset I} \cup \{ U_{i_\infty} \} \end{displaymath} is a finite subcover of the original cover. \end{proof} \begin{prop} \label{HausdorffOnePointCompactification}\hypertarget{HausdorffOnePointCompactification}{} \textbf{(one-point extension of locally compact space is Hausdorff precisely if original space is)} Let $X$ be a [[locally compact topological space]]. Then its one-point extension $X^\ast$ (def. \ref{OnePointExtension}) is a [[Hausdorff topological space]] precisely if $X$ is. \end{prop} \begin{proof} It is clear that if $X$ is not Hausdorff then $X^\ast$ is not. For the converse, assume that $X$ is Hausdorff. Since $X^\ast = X \cup \{\infty\}$ as underlying sets, we only need to check that for $x \in X$ any point, then there is an open neighbourhood $U_x \subset X \subset X^\ast$ and an open neighbourhood $V_\infty \subset X^\ast$ of the extra point which are disjoint. That $X$ is locally compact implies by definition that there exists an open neighbourhood $U_k \supset \{x\}$ whose [[topological closure]] $CK \coloneqq Cl(U_x)$ is a closed compact neighbourhood $CK \supset \{x\}$. Hence \begin{displaymath} V_\infty \coloneqq (X \backslash CK ) \cup \{\infty\} \subset X^\ast \end{displaymath} is an open neighbourhood of $\{\infty\}$ and the two are disjoint \begin{displaymath} U_x \cap V_\infty = \emptyset \end{displaymath} by construction. \end{proof} \begin{prop} \label{InclusionIntoOnePointExtensionIsOpenEmbedding}\hypertarget{InclusionIntoOnePointExtensionIsOpenEmbedding}{} \textbf{(inclusion into one-point extension is open embedding)} Let $X$ be a [[topological space]]. Then the evident inclusion function \begin{displaymath} i \;\colon\; X \longrightarrow X^\ast \end{displaymath} into its one-point extension (def. \ref{OnePointExtension}) is \begin{enumerate}% \item a [[continuous function]] \item an [[open map]] \item an [[embedding of topological spaces]]. \end{enumerate} \end{prop} \begin{proof} Regarding the first point: For $U \subset X$ open and $CK \subset X$ closed and compact, the preimages of the corresponding open subsets in $X^\ast$ are \begin{displaymath} i^{-1}(U) = U \phantom{AAAA} i^{-1}( (X \backslash CK) \cup \infty ) = X \backslash CK \end{displaymath} which are open in $X$. Regarding the second point: The image of an open subset $U \subset X$ is $i(U) = U \subset X^\ast$, which is open by definition. Regarding the third point: We need to show that $i \colon X \to i(X) \subset X^\ast$ is a [[homeomorphism]]. This is immediate from the definition of $X^\ast$. \end{proof} \begin{remark} \label{CompactHausdorffSpaceIsCompactificationOfComplementOfAnyPoint}\hypertarget{CompactHausdorffSpaceIsCompactificationOfComplementOfAnyPoint}{} For $X$ a [[compact Hausdorff space]] and $x_0 \in X$ any point, then $X$ is [[homeomorphism|homeomorphic]] to the one-point compactification of the [[complement]] [[subspace]] $X \setminus \{x_0\} \subset X$: \begin{displaymath} X \simeq (X \setminus \{x_0\})^\ast \,. \end{displaymath} Observe also that $X \setminus \{x_0\}$, being an [[open subspace]] of a [[compact Hausdorff space]] is a [[locally compact topological space]], since [[open subspaces of compact Hausdorff spaces are locally compact]], and of course it is Hausdorff, since $X$ is. \end{remark} \begin{proof} Since [[closed subspaces of compact Hausdorff spaces are equivalently compact subspaces]], the open neighbourhoods of $x \in X$ are equivalently the complements of closed, and hence compact closed, subsets in $X \setminus \{x\}$. By def. \ref{OnePointExtension} this means that the function \begin{displaymath} \itexarray{ X &\longrightarrow& (X \setminus \{x_0\})^\ast } \end{displaymath} which is the identity on $X \setminus \{x_0\}$ and sends $x_0 \mapsto \infty$ (hence which is just the identity on the underlying sets) is a [[homeomorphism]]. \end{proof} \hypertarget{UniversalProperty}{}\subsubsection*{{Universal property}}\label{UniversalProperty} As a [[pointed topological space|pointed]] [[locally compact topological space|locally compact]] [[Hausdorff space]], the one-point compactification of $X$ may be described by a [[universal property]]: For every [[pointed topological space|pointed]] [[locally compact topological space|locally compact]] [[Hausdorff space]] $(Y, y_0)$ and every [[continuous map]] $f \colon X \to Y$ such that the [[pre-image]] $f^{-1}(K)$ is compact for all compact sets $K$ not containing $y_0$, there is a unique basepoint-preserving continuous map $X^\ast \to Y$ that extends $f$. This property characterizes $X^\ast$ in an [[essentially unique]] manner. $X$ is [[dense subspace|dense]] in $X^*$ precisely if $X$ is not already compact. Note that $X^*$ is technically a [[compactification]] of $X$ only in this case. $X^*$ is [[Hausdorff space|Hausdorff]] (hence a [[compactum]]) if and only if $X$ is already both Hausdorff and [[locally compact space|locally compact]] (see prop. \ref{HausdorffOnePointCompactification}). \hypertarget{functoriality}{}\subsubsection*{{Functoriality}}\label{functoriality} The operation of one-point compactification is not a [[functor]] on the whole [[category]] of [[topological spaces]]. But it does extend to a [[functor]] on [[topological spaces]] with [[proper maps]] between them. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{ExamplesSpheres}{}\subsubsection*{{Eculidean spaces compactify to Spheres}}\label{ExamplesSpheres} We discuss how the [[one-point compactification]] of [[Euclidean space]] of [[dimension]] $n$ is the [[n-sphere]]. \begin{example} \label{nSphereIsOnePointCompactificationOfRn}\hypertarget{nSphereIsOnePointCompactificationOfRn}{} \textbf{([[one-point compactification]] of [[Euclidean space|Euclidean n-space]] si the [[n-sphere]])} For $n \in \mathbb{N}$ the [[n-sphere]] with its standard [[topological space|topology]] (e.g. as a [[subspace]] of the [[Euclidean space]] $\mathbb{R}^{n+1}$ with its [[metric topology]]) is [[homeomorphism|homeomorphic]] to the one-point compactification (def. \ref{OnePointExtension}) of the [[Euclidean space]] $\mathbb{R}^n$ \begin{displaymath} S^n \simeq (\mathbb{R}^n)^\ast \,. \end{displaymath} \end{example} \begin{proof} Pick a point $\infty \in S^n$. By [[stereographic projection]] we have a [[homeomorphism]] \begin{displaymath} S^n \setminus \{\infty\} \simeq \mathbb{R}^n \,. \end{displaymath} With this it only remains to see that for $U_\infty \supset \{\infty\}$ an open neighbourhood of $\infty$ in $S^n$ then the complement $S^n \setminus U_\infty$ is compact closed, and cnversely that the complement of every compact closed subset of $S^n \setminus \{\infty\}$ is an open neighbourhood of $\{\infty\}$. Observe that under [[stereographic projection]] the open subspaces $U_\infty \setminus \{\infty\} \subset S^n \setminus \{\infty\}$ are identified precisely with the [[closed subset|closed]] and [[bounded subsets]] of $\mathbb{R}^n$. (Closure is immediate, boundedness follows because an open neighbourhood of $\{\infty\} \in S^n$ needs to contain an open ball around $0 \in \mathbb{R}^n \simeq S^n \setminus \{-\infty\}$ in the \emph{other} stereographic projection, which under change of chart gives a bounded subset. ) By the [[Heine-Borel theorem]] the closed and bounded subsets of $\mathbb{R}^n$ are precisely the compact, and hence the compact closed, subsets of $\mathbb{R}^n \simeq S^n \setminus \{\infty\}$. \end{proof} \begin{remark} \label{RelevanceForMonopolesAndInstantons}\hypertarget{RelevanceForMonopolesAndInstantons}{} \textbf{(relevance for [[monopoles]] and [[instantons]] in [[gauge theory]])} In [[physics]], Example \ref{nSphereIsOnePointCompactificationOfRn} governs the phenomenon of [[monopoles]] and [[instantons]] for [[gauge theory]] on [[Minkowski spacetime]] or [[Euclidean space]]: While such spaces themselves are not [[compact topological space|compact]], the consistency condition that any [[field history|field configuration]] carries a [[finite number|finite]] [[energy]] requires that [[gauge fields]] \emph{[[vanishing at infinity|vanish at infinity]]}. This means that if $A$ is the [[classifying space]] for the corresponding gauge field -- e.g. $A = B G$ for [[Yang-Mills theory]] with [[gauge group]] $G$ -- and if $a_\infty \in A$ denotes the [[pointed topological space|base point]] witnessing vanishing fields, then a [[field configuration]]/[[cocycle]] \begin{displaymath} \mathbb{R}^n \overset{c}{\longrightarrow} A \end{displaymath} on $\mathbb{R}^n$ in $A$-[[generalized cohomology theory|cohomology]] \emph{[[vanishing at infinity|vanishes at infinity]]} if outside any [[compact topological space|compact]] [[subset]] its value is the vanishing field configuration $a_\infty$. But by Def. \ref{OnePointExtension} this is equivalent to the cocycle [[extension|extends]] to the [[one-point compactification]] as a [[morphism]] of [[pointed topological space]]: \begin{displaymath} \itexarray{ \big( \mathbb{R}^n \big) \simeq S^n & \overset{c}{\longrightarrow} & A \\ \infty &\mapsto& a_\infty } \end{displaymath} The following graphics illustrates this for $A = S^n$ an [[n-sphere]] itself, hence for charges in [[Cohomotopy cohomology theory]]: \begin{quote}% graphics grabbed from \href{cohomotopy+charge#SatiSchreiber19}{SS 19} \end{quote} For more see at \emph{\href{Yang-Mills+instanton#FromTheMathsToThePhysicsStory}{Yang-Mills instanton -- SU(2)-instantons from the correct maths to the traditional physics story}}. \end{remark} \hypertarget{linear_representations_compactify_to_representation_spheres}{}\subsubsection*{{Linear representations compactify to representation spheres}}\label{linear_representations_compactify_to_representation_spheres} Via the presentation of example \ref{nSphereIsOnePointCompactificationOfRn}, the canonical [[action]] of the [[orthogonal group]] $O(N)$ on $\mathbb{R}^n$ induces an action of $O(n)$ on $S^n$, which preserves the basepoint $\infty$ (the ``point at infinity''). This construction presents the [[J-homomorphism]] in [[stable homotopy theory]] and is encoded for instance in the definition of [[orthogonal spectra]]. Slightly more generally, for $V$ any real [[vector space]] of [[dimension]] $n$ one has $S^n \simeq (V)^\ast$. In this context and in view of the previous case, one usually writes \begin{displaymath} S^V \coloneqq (V)^\ast \end{displaymath} for the $n$-[[sphere]] obtained as the one-point compactification of the vector space $V$. \begin{prop} \label{}\hypertarget{}{} For $V,W \in Vect_{\mathbb{R}}$ two real [[vector spaces]], there is a [[natural transformation|natural]] [[homeomorphism]] \begin{displaymath} S^V \wedge S^W \simeq S^{V\oplus W} \end{displaymath} between the [[smash product]] of their one-point compactifications and the one-point compactification of the [[direct sum]]. \end{prop} \begin{remark} \label{}\hypertarget{}{} In particular, it follows directly from this that the [[suspension]] $\Sigma(-) \simeq S^1 \wedge (-)$ of the $n$-sphere is the $(n+1)$-sphere, up to [[homeomorphism]]: \begin{displaymath} \begin{aligned} \Sigma S^n & \simeq S^{\mathbb{R}^1} \wedge S^{\mathbb{R}^n} \\ & \simeq S^{\mathbb{R}^1 \oplus \mathbb{R}^n} \\ & \simeq S^{\mathbb{R}^{n+1}} \\ & \simeq S^{n+1} \end{aligned} \,. \end{displaymath} \end{remark} $\backslash$linebreak \hypertarget{thom_spaces}{}\subsubsection*{{Thom spaces}}\label{thom_spaces} For $X$ a [[compact topological space]] and $V \to X$ a [[vector bundle]], then the ([[homotopy type]] of the) one-point compactification of the total space $V$ is the [[Thom space]] of $V$, equivalent to $D(V)/S(V)$. For a simple example: the real [[projective plane]] $\mathbb{RP}^2$ is the one-point compactification of the `open' [[Moebius strip|Möbius strip]], as line bundle over $S^1$. This is a special case of the more general observation that $\mathbb{RP}^{n+1}$ is the Thom space of the [[tautological line bundle]] over $\mathbb{RP}^n$. \hypertarget{locally_compact_hausdorff_spaces}{}\subsubsection*{{Locally compact Hausdorff spaces}}\label{locally_compact_hausdorff_spaces} \begin{example} \label{LocallyCompatcHausdorffSpaceIsOpenSubspaceOfCompactHausdorffSpace}\hypertarget{LocallyCompatcHausdorffSpaceIsOpenSubspaceOfCompactHausdorffSpace}{} \textbf{(every [[locally compact topological space|locally compact]] [[Hausdorff space]] is an [[open subset|open]] [[subspace]] of a [[compact Hausdorff space]])} Every [[locally compact topological space|locally compact]] [[Hausdorff space]] is [[homeomorphism|homemorphic]] to a [[open subset|open]] [[topological subspace]] of a [[compact topological space]]. \end{example} \begin{proof} In one direction the statement is that [[open subspaces of compact Hausdorff spaces are locally compact]] (see there for the proof). What we need to show is that every locally compact Hausdorff spaces arises this way. So let $X$ be a locally compact Hausdorff space. By prop. \ref{OnePointExtensionIsCompact} and prop. \ref{HausdorffOnePointCompactification} its one-point extension $X^\ast$ (def. \ref{OnePointExtension}) is a [[compact Hausdorff space]]. By prop. \ref{InclusionIntoOnePointExtensionIsOpenEmbedding} the canonical inclusion $X \to X^\ast$ is an [[open map|open]] [[embedding of topological spaces]]. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Thom space]] \item [[compactification]] \begin{itemize}% \item [[Stone-Cech compactification]] \item [[end compactification]] \item [[Bohr compactification]] \item [[Kaluza-Klein compactification]] \end{itemize} \item [[configuration space (mathematics)]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The concept goes back to \begin{itemize}% \item [[Pavel Aleksandrov]], \emph{Über die Metrisation der im Kleinen kompakten topologischen Räume}, Mathematische Annalen (1924) Volume: 92, page 294-301 (\href{https://eudml.org/doc/159072}{dml:159072}) \end{itemize} Textbook accounts: \begin{itemize}% \item John Kelly, \href{https://archive.org/details/GeneralTopology/page/n167}{p. 150} of: \emph{General Topology}, van Nostrand 1955 (\href{https://archive.org/details/GeneralTopology}{archive:GeneralTopology}) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Alexandroff_extension}{Alexandroff extension}} \end{itemize} [[!redirects one-point compactification]] [[!redirects one-point compactifications]] [[!redirects One-point compactification]] [[!redirects Alexandroff compactification]] [[!redirects Alexandroff compactifications]] [[!redirects Alexandrov compactification]] [[!redirects Alexandrov compactifications]] [[!redirects Aleksandrov compactification]] [[!redirects Aleksandrov compactifications]] [[!redirects Александров compactification]] [[!redirects Александров compactifications]] [[!redirects one-point extension]] [[!redirects one-point extensions]] [[!redirects Alexandroff extension]] [[!redirects Alexandroff extensions]] [[!redirects Alexandrov extension]] [[!redirects Alexandrov extensions]] [[!redirects Aleksandrov extension]] [[!redirects Aleksandrov extensions]] [[!redirects Александров extension]] [[!redirects Александров extensions]] [[!redirects point at infinity]] \end{document}