\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{open morphism} \begin{quote}% This page is about the general concept. For open [[continuous functions]] see at \emph{[[open map]]}. \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{for_maps_between_topological_spaces}{For maps between topological spaces}\dotfill \pageref*{for_maps_between_topological_spaces} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{for_morphisms_between_locales}{For morphisms between locales}\dotfill \pageref*{for_morphisms_between_locales} \linebreak \noindent\hyperlink{for_geometric_morphisms_of_toposes}{For geometric morphisms of toposes}\dotfill \pageref*{for_geometric_morphisms_of_toposes} \linebreak \noindent\hyperlink{for_morphisms_in_a_topos}{For morphisms in a topos}\dotfill \pageref*{for_morphisms_in_a_topos} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{for_maps_between_topological_spaces}{}\subsubsection*{{For maps between topological spaces}}\label{for_maps_between_topological_spaces} A [[function]] $f : X \to Y$ between [[topological space]]s is called an \textbf{[[open map]]} if the [[image]] of every [[open set]] in $X$ is also open in $Y$. Recall that $f$ is a \textbf{[[continuous map]]} if the [[preimage]] of every [[open subspace|open set]] in $Y$ is open in $X$. For defining open maps typically one restricts attention to open [[continuous map]]s, although it also makes sense to speak of open functions that are not continuous. \hypertarget{examples}{}\paragraph*{{Examples}}\label{examples} \begin{itemize}% \item For any two topological spaces $X$, $Y$, the projection map $\pi \colon X \times Y \to Y$ out of the [[product topological space]] is open. \item If $G$ is a [[topological group]] and $H$ is a subgroup, then the projection to the coset space $p \colon G \to G/H$, where $G/H$ is provided with the quotient topology (making $p$ a quotient map), is open. This follows easily from the observation that if $U$ is open in $G$, then so is \begin{displaymath} p^{-1}(p(U)) = U H = \bigcup_{h \in H} U h \end{displaymath} \item If $p \colon A \to B$ and $q \colon C \to D$ are open maps, then their product $p \times q \colon A \times C \to B \times D$ is also an open map. \end{itemize} \hypertarget{for_morphisms_between_locales}{}\subsubsection*{{For morphisms between locales}}\label{for_morphisms_between_locales} A continuous map $f\colon X \to Y$ of topological spaces defines a homomorphism $f^*\colon Op(Y) \to Op(X)$ between the [[frames]] of open sets of $X$ and $Y$. If $f$ is open, then this frame homomorphism is also a [[complete lattice|complete]] [[Heyting algebra]] homomorphism; the converse holds if $Y$ is a [[T-D space]]. Accordingly, we define a map $f\colon X \to Y$ of [[locales]] to be \textbf{open} if it is, as a frame homomorphism $f^*\colon Op(Y) \to Op(X)$, a complete Heyting algebra homomorphism, i.e. it preserves arbitrary [[meets]] and the Heyting implication. This is equivalent to saying that $f^*\colon Op(Y) \to Op(X)$ has a left adjoint $f_!$ (by the [[adjoint functor theorem]] for posets) which satisfies the [[Frobenius reciprocity]] condition that $f_!(U \cap f^* V) = f_!(U) \cap V$. In the special case that $Y$ is the one-point locale, the Frobenius reciprocity condition is automatically satisfied. \hypertarget{for_geometric_morphisms_of_toposes}{}\subsubsection*{{For geometric morphisms of toposes}}\label{for_geometric_morphisms_of_toposes} [[categorification|Categorifying]], a [[geometric morphism]] $f\colon X \to Y$ of [[toposes]] is an [[open geometric morphism]] if its [[inverse image functor]] $f^*\colon Y \to X$ is a [[Heyting functor]]. \hypertarget{for_morphisms_in_a_topos}{}\subsubsection*{{For morphisms in a topos}}\label{for_morphisms_in_a_topos} A [[class]] $R \subset Mor(\mathcal{E})$ of [[morphism]]s in a [[topos]] $\mathcal{E}$ is called a \textbf{class of open maps} if it satisfies the following axioms. \begin{enumerate}% \item Every [[isomorphism]] belongs to $R$; \item The [[pullback]] of a morphism in $R$ belongs to $R$. \item If the pullback of a morphism $f$ along an [[epimorphism]] lands in $R$, then $f$ is also in $R$. \item For every [[set]] $S$ the canonical morphism $(\coprod_{s \in S} *) \to *$ from the $S$-fold [[coproduct]] of the [[terminal object]] to the terminal object is in $R$. \item For $\{X_i \stackrel{f_i}{\to} Y_i\}_{i \in I} \subset R$ then also the [[coproduct]] $\coprod_i X_i \to \coprod_i Y_i$ is in $R$. \item If in a diagram of the form \begin{displaymath} \itexarray{ Y &&\stackrel{p}{\to}&& X \\ & {}_{\mathllap{g}}\searrow && \swarrow_{\mathrlap{f}} \\ && B } \end{displaymath} we have that $p$ is an [[epimorphism]] and $g$ is in $R$, then $f$ is in $R$. \end{enumerate} The class $R$ is called a class of \textbf{\'e{}tale maps} if in addition to the axioms 1-5 above it satisfies \begin{enumerate}% \item for $f : X \to Y$ in $R$ also the [[diagonal]] $Y \to Y \times_X Y$ is in $R$. \item If in \begin{displaymath} \itexarray{ Y &&\stackrel{p}{\to}&& X \\ & {}_{\mathllap{g}}\searrow && \swarrow_{\mathrlap{f}} \\ && B } \end{displaymath} we have that $p$ is an epimorphism, and $p, g \in R$, then $f\in R$. \end{enumerate} For instance (\hyperlink{JoyalMoerdijk}{JoyalMoerdijk, section 1}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[open geometric morphism]] \item [[essential sublocale]] \item [[closed morphism]], [[proper morphism]] \item [[étale map]] \item [[separated morphism]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Peter Johnstone]], \emph{Complemented sublocales and open maps} , Annals of Pure and Applied Logic \textbf{137} (2006) pp.240--255. \item [[Peter Johnstone]], \emph{[[Sketches of an Elephant]]}, volume II, Oxford University Press 2002. (Section C1.5, pp.520-522) \item [[André Joyal]], [[Ieke Moerdijk]], \emph{A completeness theorem for open maps}, Annals of Pure and Applied Logic \textbf{70} no.1 (1994) pp.51-86. \href{http://www.ams.org/mathscinet-getitem?mr=1303663}{MR95j:03104}, \end{itemize} An application: \begin{itemize}% \item [[André Joyal]], [[Mogens Nielsen]] and [[Glynn Winskel]], \emph{Bisimulation from open maps}, BRICS report series RS-94-7 (1994) (\href{http://ojs.statsbiblioteket.dk/index.php/brics/article/view/21663}{abstract page}, \href{http://www.brics.dk/RS/94/7/BRICS-RS-94-7.pdf}{pdf}). \end{itemize} \end{document}