\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{opetopic omega-category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{by_baezdolan}{By Baez-Dolan}\dotfill \pageref*{by_baezdolan} \linebreak \noindent\hyperlink{by_makkai}{By Makkai}\dotfill \pageref*{by_makkai} \linebreak \noindent\hyperlink{DefinitionByPalm}{By Palm}\dotfill \pageref*{DefinitionByPalm} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[higher category theory]], a concept of \emph{opetopic omega-category} is one of \emph{[[weak omega-category]]} modeled on [[opetope|opetopic]] [[geometric shape for higher structures|shapes]]. There are various flavors of the definition. Typically they all say that an opetopic omega-category is an [[opetopic set]] equipped with certain [[structure]] and [[property]]. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} \hypertarget{by_baezdolan}{}\subsubsection*{{By Baez-Dolan}}\label{by_baezdolan} (\hyperlink{BaezDolan97}{Baez-Dolan 97}) \hypertarget{by_makkai}{}\subsubsection*{{By Makkai}}\label{by_makkai} (\hyperlink{HermidaMakkaiPower01}{Hermida-Makkai-Power 01}, \hyperlink{Makkai}{Makkai}) The actual definition of opetopic $\omega$-categories, called ``multitopic $\omega$-categories'' here, appears on p.57 of (\hyperlink{Makkai}{Makkai}). \hypertarget{DefinitionByPalm}{}\subsubsection*{{By Palm}}\label{DefinitionByPalm} In the definition by (\hyperlink{Palm}{Palm}) of opetopic $\omega$-category, the extra [[structure]] on an [[opetopic set]] is that some cells are labeled as ``thin'' (as [[equivalences]]) and the extra [[property]] are two classes of higher dimensional [[horn]]-filler conditions: \begin{enumerate}% \item given a [[horn]] (``niche'', ``nook'') obtained from an [[opetope]] by discarding the [[codimension]]-0 interior and the outgoing [[codimension]]-1 face, then there is a filler opetope whose codimension-0 interior is marked as an equivalence. The filling outgoing codimension-1 face is marked an equivalence if all the other codimension-1 faces are. \item given a [[horn]] (``niche'', ``nook'') obtained from an [[opetope]] by discarding the [[codimension]]-0 interior and an incoming codimension-1 face such that all the remaining codimension-1 faces are marked as equivalences, then there exists a filler both whose codimension-1 and codimension-0 cell are marked as equivalences. \end{enumerate} This definition has been given a [[syntax|syntactic]] formulation by (\hyperlink{Finster12}{Finster 12}) in terms of \emph{[[opetopic type theory]]}. However, there is no saturation condition in this definition. \hypertarget{references}{}\subsection*{{References}}\label{references} An overview is in \href{http://cheng.staff.shef.ac.uk/guidebook/guidebook-new.pdf#page=63}{chapter 4} of \begin{itemize}% \item [[Eugenia Cheng]], [[Aaron Lauda]], \emph{Higher dimensional categories: an illustrated guidebook} (\href{http://cheng.staff.shef.ac.uk/guidebook/guidebook-new.pdf}{pdf}) \end{itemize} and in chapter 7 of \begin{itemize}% \item [[Tom Leinster]], \emph{Higher operads, higher categories}, London Math. Soc. Lec. Note Series \textbf{298}, \href{http://arxiv.org/abs/math.CT/0305049}{math.CT/0305049} \end{itemize} Opetopes were introduced here: \begin{itemize}% \item [[John Baez]], [[James Dolan]], Higher-dimensional algebra III: $n$-categories and the algebra of opetopes, \emph{Adv. Math.} \textbf{135} (1998), 145--206. (\href{http://arxiv.org/abs/q-alg/9702014}{arXiv:q-alg/9702014}) \end{itemize} Some mistakes were corrected in subsequent papers: \begin{itemize}% \item [[Eugenia Cheng]], The category of opetopes and the category of opetopic sets, \emph{Th. Appl. Cat.} \textbf{11} (2003), 353--374. \href{http://arxiv.org/abs/math/0304284}{arXiv:0304284}) \item [[Tom Leinster]], \emph{Structures in higher-dimensional category theory}, (\href{http://arxiv.org/abs/math/0109021}{arXiv:0109021}) \end{itemize} Makkai and collaborators introduced a slight variation they called `multitopes': \begin{itemize}% \item [[Claudio Hermida]], [[Michael Makkai]], [[John Power]], \emph{On weak higher-dimensional categories I, II} \emph{Jour. Pure Appl. Alg.} \textbf{157} (2001), 221--277 (\href{http://www.sciencedirect.com/science/article/pii/S0022404999001796}{journal}, \href{http://www.math.mcgill.ca/makkai/multitopicsets/}{ps.gz files}, [[HermidaMakkaiPower01.pdf:file]]) \item [[Michael Makkai]], The multitopic $\omega$-category of all multitopic $\omega$-categories. (\href{http://www.math.mcgill.ca/makkai/mltomcat04/mltomcat04.pdf}{pdf}, \href{http://www.math.mcgill.ca/makkai/mltomcat04/}{web}) \end{itemize} Cheng has carefully compared opetopes and multitopes, and various approaches to opetopic $n$-categories: \begin{itemize}% \item [[Eugenia Cheng]], \emph{Weak $n$-categories: comparing opetopic foundations}, Jour. Pure Appl. Alg. \textbf{186} (2004), 219--231. (\href{http://arxiv.org/abs/math/0304279}{arXiv:0304279}) \item [[Eugenia Cheng]], \emph{Weak $n$-categories: opetopic and multitopic foundations}, Jour. Pure Appl. Alg.\_\textbf{186} (2004), 109--137.(\href{http://arxiv.org/abs/math/0304277}{arXiv:0304277}) \end{itemize} She has also shown that opetopic [[bicategories]] are ``the same'' as the ordinary kind: \begin{itemize}% \item [[Eugenia Cheng]], Opetopic bicategories: comparison with the classical theory. (\href{http://arxiv.org/abs/math/0304285}{arXiv}) \end{itemize} A higher dimensional [[string diagram]]-notation for opetopes was introduced (as ``zoom complexes'' in section 1.1) in \begin{itemize}% \item [[Joachim Kock]], [[André Joyal]], [[Michael Batanin]], [[Jean-François Mascari]], \emph{Polynomial functors and opetopes} (\href{http://arxiv.org/abs/0706.1033}{arXiv:0706.1033}) \end{itemize} Animated exposition of this higher-dimensional string-diagram notation is in \begin{itemize}% \item [[Eric Finster]], \emph{Opetopic Diagrams 1 - Basics} (\href{http://www.youtube.com/watch?v=OANwLohwJqk}{video}) \item [[Eric Finster]], \emph{Opetopic Diagrams 2 - Geometry} (\href{http://www.youtube.com/watch?v=E7OvuA1jRKM}{video}) \end{itemize} The variant of \href{opetopic+omega-category#DefinitionByPalm}{Palm opetopic omega-categories} is due to \begin{itemize}% \item [[Thorsten Palm]], \ldots{} \end{itemize} A [[syntax|syntactic]] formalization of [[opetopic omega-categories]] in terms of [[opetopic type theory]] is in \begin{itemize}% \item [[Eric Finster]], \emph{Type Theory and the Opetopes}, talk at \href{http://www.mimuw.edu.pl/~zawado/SemTK/OSTKA.html}{Polish Seminar on Category Theory and its Applications, June 2012} (\href{http://sma.epfl.ch/~finster/opetope/types-and-opetopes.pdf}{pdf}) \end{itemize} [[!redirects opetopic omega-categories]] [[!redirects opetopic ∞-category]] [[!redirects opetopic ∞-categories]] \end{document}