\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{opposite category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{duality}{}\paragraph*{{Duality}}\label{duality} [[!include duality - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{in_category_theory}{In category theory}\dotfill \pageref*{in_category_theory} \linebreak \noindent\hyperlink{opposite_functors}{Opposite functors}\dotfill \pageref*{opposite_functors} \linebreak \noindent\hyperlink{opposite_natural_transformations}{Opposite natural transformations}\dotfill \pageref*{opposite_natural_transformations} \linebreak \noindent\hyperlink{the_oppositization_2functor}{The oppositization 2-functor}\dotfill \pageref*{the_oppositization_2functor} \linebreak \noindent\hyperlink{in_enriched_category_theory}{In enriched category theory}\dotfill \pageref*{in_enriched_category_theory} \linebreak \noindent\hyperlink{in_higher_category_theory}{In higher category theory}\dotfill \pageref*{in_higher_category_theory} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{classes_of_examples}{Classes of examples}\dotfill \pageref*{classes_of_examples} \linebreak \noindent\hyperlink{OppositeGroup}{Opposite group}\dotfill \pageref*{OppositeGroup} \linebreak \noindent\hyperlink{opposite_of_the_opposite}{Opposite of the opposite}\dotfill \pageref*{opposite_of_the_opposite} \linebreak \noindent\hyperlink{coalgebraic_structures}{Co-algebraic structures}\dotfill \pageref*{coalgebraic_structures} \linebreak \noindent\hyperlink{duality_2}{Duality}\dotfill \pageref*{duality_2} \linebreak \noindent\hyperlink{specific_examples}{Specific examples}\dotfill \pageref*{specific_examples} \linebreak \noindent\hyperlink{opposite_of__and_}{Opposite of $Set$ and $FinSet$}\dotfill \pageref*{opposite_of__and_} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For a [[category]] $C$, its \emph{opposite category} $C^{op}$ is the category obtained by formally reversing the direction of all its [[morphisms]] (while retaining their original composition law). Categories generalize (are a [[horizontal categorification]] of) [[monoids]], [[groups]] and [[algebras]], and forming the opposite category corresponds to forming the opposite of a group, of a monoid, of an algebra. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{in_category_theory}{}\subsubsection*{{In category theory}}\label{in_category_theory} For a [[category]] $C$, the \textbf{opposite category} $C^{op}$ has the same [[objects]] as $C$, but a [[morphism]] $f : x \to y$ in $C^{op}$ is the same as a morphism $f : y \to x$ in $C$, and a composite of morphisms $g f$ in $C^{op}$ is defined to be the composite $f g$ in $C$. More precisely, $C_{\mathrm{obj}}$ and $C_{\mathrm{mor}}$ are, respectively, the collections of [[objects]] and of [[morphisms]] of $C$, and if the structure maps of $C$ are \begin{itemize}% \item source and target: $s_C,t_C : C_{\mathrm{mor}} \to C_{\mathrm{obj}}$ \item identity-assignment: $i_C : C_{\mathrm{obj}} \to C_{\mathrm{mor}}$ \item composition: $\circ_C : C_{\mathrm{mor}} \times_{C_{\mathrm{obj}}} C_{\mathrm{mor}} \to C_{\mathrm{mor}}$ \end{itemize} then $C^{op}$ is the category with \begin{itemize}% \item the same (isomorphic) collections of objects and morphisms $(C^{op})_{\mathrm{obj}} := C_{\mathrm{obj}}$ $(C^{op})_{\mathrm{mor}} := C_{\mathrm{mor}}$ \item the same identity-assigning map $i_{C^{op}} := i_C$ \item \emph{switched} source and target maps $s_{C^{op}} := t_C$ $t_{C^{op}} := s_C$ \item the \emph{same} composition operation, $\circ_{C^{op}} := \circ_{C}$. or more precisely, the composition operation of $C^{op}$ is \begin{displaymath} \circ_{C^{op}} : C_{\mathrm{mor}}^{op} {}_{s^{op}}\times_{t^{op}} C_{\mathrm{mor}}^{op} = C_{\mathrm{mor}} {}_{t} \times_{s} C_{\mathrm{mor}} \stackrel{\simeq}{\to} C_{\mathrm{mor}} {}_{s} \times_{t} C_{\mathrm{mor}} \stackrel{\circ}{\to} C_{\mathrm{mor}} \,, \end{displaymath} where the isomorphism in the middle is the unique one induced from the universality of the [[pullback]]. \end{itemize} Notice that hence the composition law does \emph{not} change when passing to the opposite category. Only the interpretation of in which direction the arrows point does change. So forming the opposite category is a completely formal process. Nevertheless, due to the switch of source and target, the opposite category $C^{op}$ is usually far from being [[equivalence of categories|equivalent]] to $C$. See the examples below. \hypertarget{opposite_functors}{}\subsubsection*{{Opposite functors}}\label{opposite_functors} Given [[categories]] $C$ and $D$, the \textbf{opposite functor} of a [[functor]] $F:C\to D$ is the functor $F^{op}:C^{op}\to D^{op}$ such that $F^{op}_{obj}=F_{obj}$ and $F^{op}_{mor}=F_{mor}$. In the literature, $F^{op}$ is often confused with $F$. This is unfortunate, since (for example) [[natural transformations]] $F^{op}\to G^{op}$ (of functors $C^{op}\to D^{op}$) can be identified with natural transformations $G\to F$ (and not $F\to G$). \hypertarget{opposite_natural_transformations}{}\subsubsection*{{Opposite natural transformations}}\label{opposite_natural_transformations} Given [[categories]] $C$ and $D$, [[functors]] $F,G:C\to D$, the \textbf{opposite natural transformation} of a [[natural transformation]] $t:F\to G$ is the natural transformation $t^{op}:G^{op}\to F^{op}$, induced by the same map $C_{obj}\to D_{mor}$ as $t$. Again, in the literature $t^{op}$ is often confused with $t$. \hypertarget{the_oppositization_2functor}{}\subsubsection*{{The oppositization 2-functor}}\label{the_oppositization_2functor} The above three constructions of the opposite category, opposite functor, and opposite natural transformation combine together into the \textbf{oppositization 2-functor} \begin{displaymath} Cat^{co}\to Cat, \end{displaymath} where $Cat^{co}$ denotes the 2-cell dual of the [[2-category]] $Cat$, with the direction of 2-morphisms reversed and the direction of 1-morphisms preserved. \hypertarget{in_enriched_category_theory}{}\subsubsection*{{In enriched category theory}}\label{in_enriched_category_theory} The definition has a direct generalization to [[enriched category theory]]. For $V$ a [[symmetric monoidal category]] and $C$ a $V$-[[enriched category]] the \textbf{opposite $V$-enriched category} $C^{op}$ is defined to be the $V$-enriched category with the same objects as $C$ and with \begin{displaymath} C^{op}(c,d) := C(d,c) \end{displaymath} and composition given by \begin{displaymath} C^{op}(b,c)\otimes C^{op}(a,b) := C(c,b) \otimes C(b,a) \stackrel{\sigma}{\to} C(b,a) \otimes C(c,b) \stackrel{\circ_C}{\to} C_{c,a} =: C^{op}(a,c) \,. \end{displaymath} The unit maps $j_a : I \to C^{op}(a,a)$ are those of $C$ under the identification $C^{op}(a,a) = C(a,a)$. Note that the [[braiding]] of $V$ is used in defining composition for $C^{op}$. So, we cannot define the opposite of a $V$-enriched category if $V$ is merely a [[monoidal category]], though $V$-enriched categories still make perfect sense in this case. If $V$ is a [[braided monoidal category]] there are (at least) two ways to define ``$C^{op}$'', resulting in two different ``opposite categories'': we can use either the braiding or the inverse braiding. If $V$ is [[symmetric monoidal category|symmetric]] these two definitions coincide. The opposite category can be regarded as a [[dual object]] of $C$ in the [[monoidal bicategory]] $V Prof$ of $V$-categories and $V$-[[profunctors]]. (Note that this does not characterize $C^{op}$ up to equivalence, but only up to [[Morita equivalence]], i.e. up to [[Cauchy completion]].) When $V$ is symmetric, then $V Prof$ is also symmetric monoidal, so there is only one notion of dual object. When $V$ is braided, then $V Prof$ is not symmetric and has two notions of dual: a left dual and a right dual. These are exactly the two different opposite categories referred to above (the ``left opposite'' and ``right opposite''). \hypertarget{in_higher_category_theory}{}\subsubsection*{{In higher category theory}}\label{in_higher_category_theory} See \begin{itemize}% \item [[opposite 2-category]] \item [[opposite (∞,1)-category]] \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} The [[nerve]] $N(C^{op})$ of $C^{op}$ is the [[simplicial set]] that is degreewise the same as $N(C)$, but in each degree with the order of the face and the order of the degeneracy maps reversed. See [[opposite quasi-category]] for more details. \hypertarget{classes_of_examples}{}\subsection*{{Classes of examples}}\label{classes_of_examples} \hypertarget{OppositeGroup}{}\subsubsection*{{Opposite group}}\label{OppositeGroup} For $G = (S, \cdot)$ a [[group]] (or [[monoid]] or [[associative algebra]], etc.) with product operation \begin{displaymath} \cdot_G : S \times S \to S \end{displaymath} the \textbf{opposite group} $G^{op}$ is the group whose underlying [[set]] (underlying object, underlying vector space, etc.) is the same as that of $G$ \begin{displaymath} S^{op} := S \end{displaymath} but whose product operation is that of $G$ but combined with a switch of the order of the arguments: \begin{displaymath} \cdot_{G^{op}} : S \times S \stackrel{\sigma}{\to} S \times S \stackrel{\cdot_S}{\to} S \,. \end{displaymath} So for $g,h \in S$ two elements we have that their product in the opposite group is \begin{displaymath} g \cdot_{G^{op}} h := h \cdot_{G} g \,. \end{displaymath} Now, the group $G$ may be thought of as the pointed one-object [[delooping]] [[groupoid]] $\mathbf{B}G$ which is the groupoid with a single object, with $S$ as its set of morphisms, and with $\cdot_G$ its composition operation. Under this identification of groups with one-object categories, passing to the opposite category corresponds precisely to passing to the opposite group \begin{displaymath} (\mathbf{B}G)^{op} = \mathbf{B}(G^{op}) \,. \end{displaymath} \hypertarget{opposite_of_the_opposite}{}\subsubsection*{{Opposite of the opposite}}\label{opposite_of_the_opposite} The opposite of an opposite category is the original category: \begin{displaymath} (C^{op})^{op} = C \,. \end{displaymath} This is also true for $V$-enriched categories when $V$ is symmetric monoidal, but not when $V$ is merely braided. However, in the latter case we can say $(C^{op1})^{op2} = C = (C^{op2})^{op1}$, i.e. the two different notions of ``opposite category'' are inverse to each other (as is always the case for left and right dualization operations in a non-symmetric monoidal (bi)category). \hypertarget{coalgebraic_structures}{}\subsubsection*{{Co-algebraic structures}}\label{coalgebraic_structures} Every algebraic structure in a category, for instance the notion of [[monoid]] in a [[monoidal category]] $C$, has a co-version, where in the original definition the direction of all morphisms is reversed -- for instance the co-version of a monoid is a [[comonoid]]. Of an [[algebra]] its a [[coalgebra]], etc. One may express this succinctly by saying that a co-structure in $C$ is an original structure in $C^{op}$. For instance a [[comonoid]] in $C$ is a [[monoid]] in $C^{op}$. \hypertarget{duality_2}{}\subsubsection*{{Duality}}\label{duality_2} Passing to the opposite category is a realization of abstract [[duality]]. This goes as far as \emph{defining} some entities as objects in an opposite category--in particular, all generalizations of [[geometry]] which characterize [[space and quantity|spaces]] in terms of [[algebra|algebras]]. The idea of [[noncommutative geometry]] is essentially to define a category of \emph{spaces} as the opposite category of a category of algebras. Similarly, a [[locale]] is opposite to a [[frame]]. Are there examples where algebras are defined as dual to spaces? Another example is the definition of the category of $L_\infty$-[[Lie infinity-algebroid|algebroids]] as that opposite to quasi-free differential graded algebras, identifying every $L_\infty$-algebra with its [[duality|dual]] [[Chevalley-Eilenberg algebra]]. \hypertarget{specific_examples}{}\subsection*{{Specific examples}}\label{specific_examples} \hypertarget{opposite_of__and_}{}\subsubsection*{{Opposite of $Set$ and $FinSet$}}\label{opposite_of__and_} The [[power set]]-[[functor]] \begin{displaymath} \mathcal{P} \;\colon\; Set^{op} \to Bool \end{displaymath} constitutes an [[equivalence of categories]] from the opposite category of [[Set]] to that of [[complete atomic Boolean algebras]]. See at \emph{\href{Set#OppositeCategory}{Set -- Properties -- Opposite category and Boolean algebras}} Restricted to [[finite sets]] this says that the opposite of the category [[FinSet]] of [[finite sets]] is [[equivalence of categories|equivalent]] to the category of finite [[boolean algebras]] \begin{displaymath} FinSet^{op} \simeq FinBoolAlg \,. \end{displaymath} See at \emph{\href{FinSet#OppositeCategory}{FinSet -- Properties -- Opposite category}}. See at \emph{[[Stone duality]]} for more. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[opposite 2-category]] \item [[opposite model category]] \item [[opposite (infinity,1)-category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} For the definition in enriched category theory see page 12 of \begin{itemize}% \item [[Max Kelly]], \emph{Basic concepts of enriched category theory} (\href{http://www.tac.mta.ca/tac/reprints/articles/10/tr10.pdf}{pdf}) \end{itemize} [[!redirects opposite categories]] [[!redirects dual category]] [[!redirects dual categories]] \end{document}