\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{orbifold} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{geometry}{}\paragraph*{{Geometry}}\label{geometry} [[!include higher geometry - contents]] \hypertarget{lie_theory}{}\paragraph*{{$\infty$-Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{GlobalQuotientOrbifolds}{Global quotient orbifolds}\dotfill \pageref*{GlobalQuotientOrbifolds} \linebreak \noindent\hyperlink{cohomology}{(Co)homology}\dotfill \pageref*{cohomology} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general_2}{General}\dotfill \pageref*{general_2} \linebreak \noindent\hyperlink{ReferencesAsLieGroupoids}{As Lie groupoids}\dotfill \pageref*{ReferencesAsLieGroupoids} \linebreak \noindent\hyperlink{ReferencesAsDiffeologicalSpaces}{As diffeological spaces}\dotfill \pageref*{ReferencesAsDiffeologicalSpaces} \linebreak \noindent\hyperlink{orbifold_cobordism}{Orbifold cobordism}\dotfill \pageref*{orbifold_cobordism} \linebreak \noindent\hyperlink{ReferencesInStringTheory}{In string theory}\dotfill \pageref*{ReferencesInStringTheory} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An [[orbifold]] is much like a [[smooth manifold]] but possibly with [[singularities]] of the form of [[fixed points]] of [[group]]-[[actions]]. Where a [[smooth manifold]] is a [[space]] locally modeled on [[Cartesian spaces]]/[[Euclidean spaces]] $\mathbb{R}^n$, an \emph{orbifold} is, more generally, a [[space]] that is locally modeled on [[Lie groupoid|smooth]] [[action groupoids]] ([[homotopy quotients]]) $\mathbb{R}^n\sslash G$ of a [[finite group]] $G$ [[action|acting]] on a [[Cartesian space]]. \begin{quote}% graphics grabbed from \hyperlink{HydeRamsdenRobins14}{Hyde-Ramsden-Robins 14} \end{quote} This turns out to be broadly captured(\hyperlink{MoerdijkPronk97}{Moerdijk-Pronk 97}, \hyperlink{Moerdijk02}{Moerdijk 02}) by saying that an orbifold is a [[proper groupoid|proper]] [[étale groupoid|étale]] [[Lie groupoid]]. ([[Morita equivalence|Morita equivalent]] Lie groupoids correspond to the same orbifolds.) The word \emph{orbifold} was introduced in (\hyperlink{Thurston}{Thurston 1992}), while the original name was \emph{$V$-manifold} (\hyperlink{Satake}{Satake}), and was taken in a more restrictive sense, assuming that the [[actions]] of [[finite groups]] on the charts are always [[effective group action|effective]]. Nowadays these are called \emph{effective orbifolds} and those which are global quotients by a finite group are \emph{global quotient orbifolds}. There is also a notion of finite stabilizers in [[algebraic geometry]]. A singular variety is called an (algebraic) \emph{orbifold} if it has only so-called \emph{orbifold singularities}. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} An orbifold is a stack presented by an [[orbifold groupoid]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{itemize}% \item One can consider a [[bicategory]] of proper \'e{}tale Lie groupoids and the orbifolds will be the objects of certain bicategorical [[localization]] of this bicategory (a result of \hyperlink{MoerdijkPronk97}{Moerdijk-Pronk 97}). \item Equivalently, every orbifold is globally a quotient of a smooth manifold by an [[action]] of finite-dimensional [[Lie group]] with finite [[stabilizer subgroup|stabilizers]] in each point. (eg (\hyperlink{ALR07}{Adem-Leida-Ruan 2007}), Corollary 1.24) \end{itemize} \hypertarget{GlobalQuotientOrbifolds}{}\subsubsection*{{Global quotient orbifolds}}\label{GlobalQuotientOrbifolds} In (\hyperlink{ALR07}{ALR 07, theorem 1.23}) is asserted that every effective orbifold $X$ (paracompact, Hausdorff) is isomorphic to a global quotient orbifold, specifically to a global quotient of $O(n)$ (where $n$ is the dimension of $X$) acting on the [[frame bundle]] of $X$ (which is a manifold). \hypertarget{cohomology}{}\subsubsection*{{(Co)homology}}\label{cohomology} It has been noticed that the topological invariants of the underlying topological space of an orbifold as a topological space with an orbifold structure are not appropriate, but have to be corrected leading to [[orbifold Euler characteristics]], [[orbifold cohomology]] etc. One of the constructions which is useful in this respect is the [[inertia orbifold]] (the inertia stack of the original orbifold) which gives rise to ``twisted sectors'' in Hilbert space of a quantum field theory on the orbifold, and also to twisted sectors in the appropriate cohomology spaces. A further generalization gives multitwisted sectors. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item Some basic building blocks of orbifolds: The quotient of a [[ball]] by a [[discrete group|discrete]] [[subgroup]] of the [[special orthogonal group]] of rotations. Is an orbifold, and orbifolds may be obtained by cutting out balls from ordinary [[smooth manifolds]] and gluing in these orbifold quotients. \item The [[moduli stack of elliptic curves]] over the [[complex numbers]] is an orbifold, being the [[homotopy quotient]] of the [[upper half plane]] by the [[special linear group]] acting by [[Möbius transformations]]. \item For $\mathcal{G}$ any orbifold, then the [[mapping space]] $\mathcal{G}^{\Pi(S^1)} = \mathcal{G}^{B\mathbb{Z}}$ is again an orbifold, called the [[inertia orbifold]]. \item [[G2-orbifolds]] \item [[lens spaces]] \item [[ADE singularities]] \item [[metric cones]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Riemannian orbifold]] \begin{itemize}% \item [[flat orbifold]] \end{itemize} \item [[discrete torsion]] \item [[motivation for higher differential geometry]] \item [[orbifold Euler characteristic]] \end{itemize} Orbifolds are in [[differential geometry]] what [[Deligne-Mumford stacks]] are in [[algebraic geometry]]. See also at \emph{[[geometric invariant theory]]} and \emph{[[GIT-stable point]]}. If the finiteness condition is dropped one also speaks of \emph{[[orbispaces]] and generally of [[stacks]].} Orbifolds may be regarded as a kind of \emph{[[stratified spaces]]}. See also \begin{itemize}% \item [[étale groupoid]] \item [[stable map]] \item [[orbifold cohomology]] \item [[Gromov-Witten theory]] \end{itemize} Orbifolds in [[string theory]]: \begin{itemize}% \item [[fractional D-brane]] [[permutation D-brane]] \item [[ADE singularity]] \item [[orientifold]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general_2}{}\subsubsection*{{General}}\label{general_2} The concept originates in \begin{itemize}% \item I. Satake, \emph{On a generalisation of the notion of manifold}, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 359--363 (\href{https://doi.org/10.1073/pnas.42.6.359}{doi:10.1073/pnas.42.6.359}) \item I. Satake, \emph{The Gauss--Bonnet theorem for $V$-manifolds}, J. Math. Soc. Japan 9 (1957), 464--492. \item [[William Thurston]], \emph{Three-dimensional geometry and topology,} preliminary draft, University of Minnesota, Minnesota, (1992) which in completed and revised form is available as his book: \emph{The Geometry and Topology of Three-Manifolds;} (\href{http://library.msri.org/books/gt3m/}{web}) in particular the orbifold discussion is in \href{http://library.msri.org/books/gt3m/PDF/13.pdf}{chapter 13}. \end{itemize} Survey of basic orbifold theory: \begin{itemize}% \item Daryl Cooper, Craig Hodgson, Steve Kerckhoff, \emph{Three-dimensional Orbifolds and Cone-Manifolds}, MSJ Memoirs Volume 5, 2000 (\href{https://web.math.ucsb.edu/~cooper/37.pdf}{pdf}, \href{https://projecteuclid.org/euclid.msjm/1389985812}{euclid:1389985812}) \item Adam Kaye, \emph{Two-Dimensional Orbifolds}, 2007 (\href{http://www.math.uchicago.edu/~may/VIGRE/VIGRE2007/REUPapers/FINALFULL/Kaye.pdf}{pdf}) \item Michael Davis, \emph{Lectures on orbifolds and reflection groups}, 2008 (\href{https://math.osu.edu/sites/math.osu.edu/files/08-05-MRI-preprint.pdf}{pdf}) \item Joan Porti, \emph{An introduction to orbifolds}, 2009 (\href{http://mat.uab.es/~porti/orbifoldLeiden.pdf}{pdf}) \item Andrew Snowden, \emph{Introduction to orbifolds}, 2011 (\href{https://ocw.mit.edu/courses/mathematics/18-904-seminar-in-topology-spring-2011/final-paper/MIT18_904S11_finlOrbifolds.pdf}{pdf}) \item [[Alejandro Adem]], Michele Klaus, \emph{Lectures on orbifolds and group cohomology} (\href{http://www.math.ubc.ca/~adem/hangzhou.pdf}{pdf}, [[AdemKlausOrbifolds.pdf:file]]) \item Francisco C. Caramello Jr, \emph{Introduction to orbifolds} (\href{https://arxiv.org/abs/1909.08699}{arXiv:1909.08699}) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Orbifold}{Orbifolds}} (which is mainly tailored toward \hyperlink{Thurston}{Thurston's approach}). \end{itemize} Textbook account: \begin{itemize}% \item [[John Ratcliffe]], \emph{Geometric Orbifolds}, chapter 13 in \emph{Foundations of Hyperbolic Manifolds}, Graduate Texts in Mathematics 149, Springer 2006 (\href{https://doi.org/10.1007/978-0-387-47322-2}{doi:10.1007/978-0-387-47322-2}, ) \end{itemize} On [[Riemannian orbifolds]]: \begin{itemize}% \item Christian Lange, \emph{Orbifolds from a metric viewpoint} (\href{https://arxiv.org/abs/1801.03472}{arXiv:1801.03472}) \item Renato G. Bettiol, Andrzej Derdzinski, Paolo Piccione, \emph{Teichmüller theory and collapse of flat manifolds}, Annali di Matematica (2018) 197: 1247 (\href{https://arxiv.org/abs/1705.08431}{arXiv:1705.08431}, \href{https://doi.org/10.1007/s10231-017-0723-7}{doi:10.1007/s10231-017-0723-7}) \item S. T. Hyde, S. J. Ramsden and V. Robins, \emph{Unification and classification of two-dimensional crystalline patterns using orbifolds}, Acta Cryst. (2014). A70, 319-337 (\href{https://doi.org/10.1107/S205327331400549X}{doi:10.1107/S205327331400549X}) \end{itemize} Survey of applications in [[mathematical physics]] and notably in [[string theory]]: \begin{itemize}% \item [[Alejandro Adem]], [[Jack Morava]], [[Yongbin Ruan]], \emph{[[Orbifolds in Mathematics and Physics]]}, Contemporary Mathematics 310 American Mathematical Society, 2002 \end{itemize} Orbifolds often appear as [[moduli spaces]] in differential geometric setting: \begin{itemize}% \item [[Dietmar Salamon]], [[Joel Robbin|Joel W. Robbin]], A construction of the Deligne--Mumford orbifold, J. Eur. Math. Society, ISSN 1435-9855, Vol. 8, N\textordmasculine{} 4, 2006, 611-699 (\href{http://arxiv.org/abs/math/0407090}{arXiv}) \end{itemize} The generalization of orbifolds to \emph{weighted [[branched manifolds]]} is discussed in \begin{itemize}% \item [[Dusa McDuff]], \emph{Groupoids, branched manifolds and multisections}, J. Symplectic Geom. Volume 4, Number 3 (2006), 259-315 (\href{http://projecteuclid.org/euclid.jsg/1180135649}{project euclid}). \end{itemize} A reference dealing with the [[string topology]] of orbifolds is \begin{itemize}% \item A. Adem, J. Leida and Y. Ruan, \emph{Orbifolds and Stringy Topology}, Cambridge Tracts in Mathematics \textbf{171} (2007) (\href{http://www.math.colostate.edu/~renzo/teaching/Orbifolds/Ruan.pdf}{pdf}) \end{itemize} \hypertarget{ReferencesAsLieGroupoids}{}\subsubsection*{{As Lie groupoids}}\label{ReferencesAsLieGroupoids} Discussion of orbifold as [[Lie groupoids]]/[[differentiable stacks]] is in \begin{itemize}% \item [[Ieke Moerdijk]], [[Dorette Pronk]], \emph{Orbifolds, sheaves and groupoids}, K-theory 12 3-21 (1997) (\href{http://www.math.colostate.edu/~renzo/teaching/Orbifolds/pronk.pdf}{pdf}, \href{http://dx.doi.org/10.4171/LEM/56-3-4}{doi:10.4171/LEM/56-3-4}) \item [[Ieke Moerdijk]], \emph{Orbifolds as Groupoids: an Introduction}, [[Alejandro Adem]], [[Jack Morava]], Yongbin Ruan (eds.) \emph{[[Orbifolds in Mathematics and Physics]]}, Contemporary Math 310 , AMS (2002), 205–222 (\href{http://arxiv.org/abs/math.DG/0203100}{arXiv:math.DG/0203100}) \item [[Eugene Lerman]], \emph{Orbifolds as stacks?}, Enseign. Math. (2), 56 3-4 (2010) (\href{http://arxiv.org/abs/0806.4160}{arXiv:0806.4160}, \href{http://dx.doi.org/10.4171/LEM/56-3-4}{doi:10.4171/LEM/56-3-4}) \end{itemize} Discussion of the corresponding perspective in [[algebraic geometry]], via [[Deligne-Mumford stacks]]: \begin{itemize}% \item [[Andrew Kresch]], \emph{On the geometry of Deligne-Mumford stacks} (\href{https://doi.org/10.5167/uzh-21342}{doi:10.5167/uzh-21342}, \href{https://www.zora.uzh.ch/id/eprint/21342/1/geodm.pdf}{pdf}), in: D. Abramovich, A. Bertram, L. Katzarkov, R. Pandharipande, M. Thaddeus (eds.) \emph{Algebraic Geometry: Seattle 2005}, Proceedings of Symposia in Pure Mathematics 80, Providence, Rhode Island: American Mathematical Society 2009, 259-271 (\href{https://bookstore.ams.org/pspum-80-1}{pspum-80-1}) \end{itemize} The [[mapping stacks]] of orbifolds are discussed in \begin{itemize}% \item W. Chen, \emph{On a notion of maps between orbifolds}, I. Function spaces, Commun. Contemp. Math. 8 (2006), no. 5, 569--620. \item [[David Roberts]], [[Raymond Vozzo]], \emph{The Smooth Hom-Stack of an Orbifold}, In : Wood D., de Gier J., Praeger C., Tao T. (eds) 2016 MATRIX Annals. MATRIX Book Series, vol 1. Springer, Cham (2018) (\href{https://arxiv.org/abs/1610.05904}{arXiv:1610.05904}, \href{https://doi.org/10.1007/978-3-319-72299-3_3}{doi:10.1007/978-3-319-72299-3\_3}) \end{itemize} An expected relation of orbifolds to [[global equivariant homotopy theory]] is discussed in \begin{itemize}% \item [[Stefan Schwede]], \emph{Orbispaces, orthogonal spaces, and the universal compact Lie group} (\href{https://arxiv.org/abs/1711.06019}{arXiv:1711.06019}) (on the relation to [[orbispaces]]/[[topological stacks]]) \end{itemize} \hypertarget{ReferencesAsDiffeologicalSpaces}{}\subsubsection*{{As diffeological spaces}}\label{ReferencesAsDiffeologicalSpaces} Discussion of orbifolds regarded as naive local quotient [[diffeological spaces]]: \begin{itemize}% \item [[Patrick Iglesias-Zemmour]], [[Yael Karshon]], Moshe Zadka, \emph{Orbifolds as diffeologies}, Transactions of the American Mathematical Society 362 (2010), 2811-2831 (\href{https://arxiv.org/abs/math/0501093}{arXiv:math/0501093}) \item [[Jordan Watts]], \emph{The Differential Structure of an Orbifold}, Rocky Mountain Journal of Mathematics, Vol. 47, No. 1 (2017), pp. 289-327 (\href{https://arxiv.org/abs/1503.01740}{arXiv:1503.01740}) \end{itemize} \hypertarget{orbifold_cobordism}{}\subsubsection*{{Orbifold cobordism}}\label{orbifold_cobordism} Orbifold [[cobordisms]] are discussed in \begin{itemize}% \item K. S. Druschel, \emph{Oriented Orbifold Cobordism}, Pacific J. Math., 164(2) (1994), 299-319. \item K. S. Druschel, \emph{The Cobordism of Oriented Three Dimensional Orbifolds}, Pacific J. Math., bf 193(1) (2000), 45-55. \item Andres Angel, \emph{Orbifold cobordism} (\href{http://www.math.uni-bonn.de/people/aangel79/Orbifold%20cobordism.pdf}{pdf}) \end{itemize} See also at \emph{[[orbifold cobordism]]}. \hypertarget{ReferencesInStringTheory}{}\subsubsection*{{In string theory}}\label{ReferencesInStringTheory} In [[perturbative string theory]], orbifolds as [[target spaces]] for a [[string]] [[sigma-model]] were first considered in \begin{itemize}% \item [[Lance Dixon]], [[Jeff Harvey]], [[Cumrun Vafa]], [[Edward Witten]], \emph{Strings on orbifolds}, Nuclear Physics B Volume 261, 1985, Pages 678-686 () \item [[Lance Dixon]], [[Jeff Harvey]], [[Cumrun Vafa]], [[Edward Witten]], \emph{Strings on orbifolds (II)}, Nuclear Physics B Volume 274, Issue 2, 15 September 1986, Pages 285-314 () \end{itemize} and then further developed notably in \begin{itemize}% \item [[Robbert Dijkgraaf]], [[Cumrun Vafa]], [[Erik Verlinde]], [[Herman Verlinde]], \emph{The operator algebra of orbifold models}, Comm. Math. Phys. Volume 123, Number 3 (1989), 485-526 (\href{https://projecteuclid.org/euclid.cmp/1104178892}{euclid:1104178892}) \item [[Eric Zaslow]], \emph{Topological orbifold models and quantum cohomology rings}, Comm. Math. Phys. 156 (1993), no. 2, 301--331. \end{itemize} And discussion of [[blow-up]] of orbifold [[singularities]] in string theory: \begin{itemize}% \item [[Paul Aspinwall]], \emph{Resolution of Orbifold Singularities in String Theory} (\href{https://arxiv.org/abs/hep-th/9403123}{arXiv:hep-th/9403123}) \end{itemize} For [[orbifolds]] in [[string theory]] also the references at \begin{itemize}% \item \emph{[[Riemannian orbifold]]}, \emph{[[toroidal orbifold]]} \item \emph{[[fractional D-brane]]} \item \emph{[[Gepner model]]} \item \emph{[[orientifold]]} \item \emph{[[RR-field tadpole cancellation]]} \end{itemize} Review of orbifolds in the context of string [[KK-compactifications]] and [[intersecting D-brane models]] includes \begin{itemize}% \item D. Bailin, A. Love, \emph{Orbifold compactifications of string theory}, Phys.Rept. 315 (1999) 285-408 () \item [[Katrin Wendland]], \emph{Orbifold Constructions of K3: A Link between Conformal Field Theory and Geometry}, in \emph{[[Orbifolds in Mathematics and Physics]]} (\href{https://arxiv.org/abs/hep-th/0112006}{arXiv:hep-th/0112006}) \item Joel Giedt, \emph{Heterotic Orbifolds} (\href{https://arxiv.org/abs/hep-ph/0204315}{arXiv:hep-ph/0204315}) \item [[Dieter Lüst]], S. Reffert, E. Scheidegger, S. Stieberger, \emph{Resolved Toroidal Orbifolds and their Orientifolds}, Adv.Theor.Math.Phys.12:67-183, 2008 (\href{https://arxiv.org/abs/hep-th/0609014}{arXiv:hep-th/0609014}) \item Susanne Reffert, \emph{The Geometer's Toolkit to String Compactifications}, lectures at \emph{\href{https://www.ggi.infn.it/showevent.pl?id=11}{String and M theory approaches to particle physics and cosmology}}, 2007 (\href{https://arxiv.org/abs/0706.1310}{arXiv:0706.1310}) \item [[Luis Ibáñez]], [[Angel Uranga]], Chapter 8 of \emph{[[String Theory and Particle Physics -- An Introduction to String Phenomenology]]}, Cambridge University Press 2012 (\href{https://doi.org/10.1017/CBO9781139018951}{doi:10.1017/CBO9781139018951}) \item [[Ralph Blumenhagen]], [[Dieter Lüst]], [[Stefan Theisen]], Chapter 10.5 \emph{Toroidal orbifolds}, of \emph{Basic Concepts of String Theory} Part of the series Theoretical and Mathematical Physics pp 585-639 Springer 2013 \end{itemize} and for orbifolds of [[G2-manifolds]] for [[M-theory on G2-manifolds]] \begin{itemize}% \item [[Frank Reidegeld]], \emph{$G_2$-orbifolds from K3 surfaces with ADE-singularities} (\href{http://arxiv.org/abs/1512.05114}{arXiv:1512.05114}) \item [[Frank Reidegeld]], \emph{$G_2$-orbifolds with ADE-singularities} (\href{https://core.ac.uk/download/pdf/159317626.pdf}{pdf}) \end{itemize} For [[topological strings]] the [[path integral as a pull-push transform]] for target orbifolds -- in analogy to what [[Gromov-Witten theory]] is for [[Deligne-Mumford stacks]] -- has first been considered in \begin{itemize}% \item Weimin Chen, [[Yongbin Ruan]], \emph{Orbifold Gromov-Witten Theory}, in \emph{[[Orbifolds in Mathematics and Physics]]} (Madison, WI, 2001), 25--85, Contemp. Math., 310, Amer. Math. Soc., Providence, RI, 2002 (\href{http://arxiv.org/abs/math/0103156}{arXiv:math/0103156}) A review with further pointers is in \item [[Dan Abramovich]], \emph{Lectures on Gromov-Witten invariants of orbifolds} (\href{http://arxiv.org/abs/math/0512372}{arXiv:math/0512372}) \end{itemize} category: Lie theory [[!redirects orbifolds]] [[!redirects effective orbifold]] [[!redirects effective orbifolds]] \end{document}