\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{orbifold cohomology} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{higher_geometry}{}\paragraph*{{Higher geometry}}\label{higher_geometry} [[!include higher geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{Idea}{Idea}\dotfill \pageref*{Idea} \linebreak \noindent\hyperlink{deficiency_of_orbifolds_as_geometric_groupoids}{Deficiency of orbifolds as geometric groupoids}\dotfill \pageref*{deficiency_of_orbifolds_as_geometric_groupoids} \linebreak \noindent\hyperlink{lift_of_orbifolds_to_geometric_global_homotopy_theory}{Lift of orbifolds to geometric global homotopy theory}\dotfill \pageref*{lift_of_orbifolds_to_geometric_global_homotopy_theory} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{GloballyEquivariantCohesiveToposes}{Globally equivariant cohesive toposes}\dotfill \pageref*{GloballyEquivariantCohesiveToposes} \linebreak \noindent\hyperlink{EquivariantCohesiveToposes}{$G$-Equivariant cohesive toposes}\dotfill \pageref*{EquivariantCohesiveToposes} \linebreak \noindent\hyperlink{OnOrbifolds}{Orbifolds}\dotfill \pageref*{OnOrbifolds} \linebreak \noindent\hyperlink{orbifold_cohomology}{Orbifold cohomology}\dotfill \pageref*{orbifold_cohomology} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{Idea}{}\subsection*{{Idea}}\label{Idea} Since the crucial extra [[structures]] carried by an [[orbifold]] are \begin{enumerate}% \item geometric structure (e.g. [[topology|topological]], [[algebraic geometry|algebro-geometric]], [[differential geometry|differential-geometric]], [[supergeometry|super-geometric]], etc.) \item [[singularities]] \end{enumerate} the [[cohomology]] of orbifolds should be such as to provide [[invariants]] which are sensitive not just to the underlying plain [[homotopy type]] of an orbifold (its [[shape modality|shape]]) but also to this extra structure. This means that \emph{orbifold cohomology} should, respectively, unify \begin{enumerate}% \item geometric cohomology (e.g. [[sheaf cohomology|sheaf]] [[hypercohomology]], [[differential cohomology]], etc.) \item [[equivariant cohomology]] in its fine form of [[Bredon cohomology]] \end{enumerate} in the sense that [[differential cohomology|geometric cohomology]] is recovered away from the orbifold [[singularities]] and [[equivariant cohomology]] is recovered right at the [[singularities]], while globally orbifold cohomology provides a unification of these two aspects. Since any concept of [[cohomology]] (as discussed there) is effectively equivalent to the choice of ambient [[(∞,1)-topos]], the question of defining orbifold cohomology is closely related to the question of how exactly to define the [[(∞,1)-category]] of orbifolds (usually a [[(2,1)-category]]) in the first place. This question is notoriously more subtle than the simple intuitive idea of orbifolds might suggest, as witnessed by the convoluted history of the concept (see e.g. \href{orbifold#Lerman08}{Lerman 08, Introduction}). $\,$ \hypertarget{deficiency_of_orbifolds_as_geometric_groupoids}{}\subsubsection*{{Deficiency of orbifolds as geometric groupoids}}\label{deficiency_of_orbifolds_as_geometric_groupoids} A proposal popular among [[Lie theory|Lie theorists]] (\href{orbifold#MoerdijkPronk97}{Moerdijk-Pronk 97}) is to regard an orbifold with local charts $U_i \in G_i Actions$ ([[actions]] of some [[group]] on some local model [[space]]) as the [[geometric stack]] obtained by gluing the corresponding [[homotopy quotients]]/[[quotient stacks]] $U_i \!\sslash \!G_i$. If $\mathbf{H}$ is the ambient [[cohesive (∞,1)-topos]] in which this takes place (for instance $\mathbf{H} =$ [[Smooth∞Groupoids]], [[SuperFormalSmooth∞Groupoids]], etc.) and if $G \in Grp \overset{Disc}{\hookrightarrow} Grp(\mathbf{H})$ is a [[discrete group]] in which all the [[isotropy groups]] of the orbifold are contained, this gives an object \begin{displaymath} \left( \itexarray{ \mathcal{X} \\ \downarrow^{\mathrlap{faith}} \\ \mathbf{B}G } \phantom{{}^{faith}} \right) \;\in\; \left( \mathbf{H}_{/\mathbf{B}G} \right)_{\leq 0} \hookrightarrow \mathbf{H}_{/\mathbf{B}G} \end{displaymath} in the [[slice (∞,1)-topos]] over the [[delooping]] $\mathbf{B}G = \ast \sslash G$ of $G$, which is still a [[0-truncated object]], reflecting that as a [[functor]] of [[groupoids]] the morphism $\mathcal{X} \to \mathbf{B}G$ is a [[faithful functor]]. Accordingly, if this is -- or were -- the correct formalization of the nature of [[orbifolds]] $\mathcal{X}$, then the corresponding orbifold cohomology has [[coefficients]] given by objects $\mathcal{A} \in \mathbf{H}_{/\mathbf{B}G}$ and cohomology sets being the [[connected components]] of the [[(∞,1)-categorical hom-spaces]] \begin{displaymath} H_{\mathbf{B}G}\big( \mathcal{X}, \mathcal{A}\big) \;\coloneqq\; \pi_0 \mathbf{H}_{/\mathbf{B}G}\big( \mathcal{X}, \mathcal{A}\big) \,. \end{displaymath} This concept of orbifold cohomology does fully reflect the geometric nature of orbifolds. It also reflects \emph{some} equivariance aspect. For example if $\mathcal{X} = \ast \sslash G$ is the one-point orbifold with singularity given by a finite group $G$, and if $V \in G Representations$ is a [[linear representation]], with $K(V,n)\sslash G \in \infty Groupoids_{/\mathbf{B}G} \overset{Disc}{\hookrightarrow} \mathbf{H}_{/\mathbf{B}G}$ its [[Eilenberg-MacLane space]], then \begin{displaymath} H_{\mathbf{B}G}\big( \mathbf{B}G, K(V,n)\sslash G \big) \;\simeq\; H^n_{grp}(G,V) \end{displaymath} is the [[group cohomology]] of $G$ with [[coefficients]] in $V$. However, this definition does \emph{not} reflect [[Bredon cohomology|Bredon]]-[[equivariant cohomology]] around the orbifold singularities. Instead, it really given (geometric/stacky refinement) of \emph{[[cohomology with local coefficients]]}. $\,$ \hypertarget{lift_of_orbifolds_to_geometric_global_homotopy_theory}{}\subsubsection*{{Lift of orbifolds to geometric global homotopy theory}}\label{lift_of_orbifolds_to_geometric_global_homotopy_theory} Hence the proposal of \href{orbifold#MoerdijkPronk97}{Moerdijk-Pronk 97}, that an [[orbifold]] should be regarded as a certain [[geometric stack]], is missing something. It was briefly suggested in \hyperlink{Schwede17}{Schwede 17, Introduction}, \hyperlink{Schwede18}{Schwede 18, p. ix-x} that the missing aspect is provided by [[global equivariant homotopy theory]], but details seem to have been left open. Here we discuss how to define the required orbifold cohomology in detail and in general. We combine the [[differential cohesion]] for the geometric aspect with the cohesion of [[global equivariant homotopy theory]] that was observed and highlighted in \hyperlink{Rezk14}{Rezk 14}. The following may serve as intuition for the issue with the nature of orbifolds: Envision the picture of an orbifold singularity and hold a mathemagical magnifying glass over the singular point. Under this magnification you can see resolved the singular point as a fuzzy fattened point, to be called $\mathbb{B}G$. Removing the magnifying glass, what one sees with the bare eye depends on how one squints: \begin{itemize}% \item The physicist says that what he sees is a singular point, but a point after all. This is the plain [[quotient]] $\ast = \ast / G$. \item The Lie geometer says that what she sees is a point transforming under the $G$-[[action]] that fixes it, hence the [[homotopy quotient]] [[groupoid]] $\mathbf{B}G =\ast \sslash G$. \end{itemize} These are two [[adjoint modality|opposite extreme aspects]] of the orbifold singularity $\mathbb{B}G$, but the orbifold singularity itself is more than both of these aspects. The real nature of an orbifold singularity is in fact a point, not a big [[classifying space]] $\mathbf{B} G$ (recall that already $\mathbf{B}\mathbb{Z}_2 = \mathbb{R}P^\infty$), but it is a point that also remembers the group [[action]], for that characterizes how the singularity is being singular. \begin{displaymath} \itexarray{ && { \text{orbifold singularity} \atop {\mathbb{B}G} } \\ & {}^{\mathllap{ʃ_{sing}}}\swarrow & {{\phantom{A}} \atop { \text{opposite extreme} \atop \text{aspects of orbifold singularity} }} & \searrow^{\mathrlap{ \flat_{sing} }} \\ { \text{plain quotient} \atop {\ast = \ast/G} } && && { \text{homotopy quotient} \atop { \mathbf{B}G = \ast \sslash G } } } \end{displaymath} \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} The definition of orbifold cohomology below in Def. \ref{OrbifoldCohomology} is the canonical [[cohomology]] in a [[slice (infinity,1)-topos|slice]] of the [[globally equivariant homotopy theory]] $\mathbf{H}_{sing}$ of the given ambient [[cohesive (∞,1)-topos]] $\mathbf{H}$. For completeness, we first introduce/recall $\mathbf{H}_{sing}$ in Prop. \ref{CohesionOfGlobalEquivariantHomotopyTheory} below, as well as its slices to $G$-[[equivariant homotopy theory]] $\mathbf{H}_G$ (Def. \ref{GEquivariantHomotopyTheoryOfCohesiveInfinityTopos} below), following \hyperlink{Rezk14}{Rezk 14}. The key point in the following is the identification of [[orbifolds]] as the [[n-truncated object in an (∞,1)-category|0-truncated]] ``$Singularities$-[[codiscrete objects]]'' in $\mathbf{H}_{sing}$ (Def. \ref{Orbifold} below), which is consistent in that under passage to [[shape modality|shapes]], i.e. the underlying bare [[globally equivariant homotopy theory|globally equivariant]] [[homotopy types]], it reproduces the standard embedding of [[G-spaces]] into [[globally equivariant homotopy theory]] (Example \ref{GlobalHomotopyQuotientsOfSmoothManifolds} below.) $\,$ \hypertarget{GloballyEquivariantCohesiveToposes}{}\subsubsection*{{Globally equivariant cohesive toposes}}\label{GloballyEquivariantCohesiveToposes} We consider here the evident refinement to \emph{geometric cohomology} hence to \emph{[[differential cohomology]]} ([[cohesion|cohesive]] [[infinity-stack|∞-stacky]] [[sheaf cohomology]]) of [[globally equivariant homotopy theory]], in Prop. \ref{CohesionOfGlobalEquivariantHomotopyTheory} below. In order to bring out the conceptual appearance of [[orbifolds]] further \hyperlink{OnOrbifolds}{below}, we take the liberty of referring to what otherwise is known as the ``[[global orbit category]]'' instead as the \emph{categories of singularities} (Def. \ref{CategoryOfSingularities} below). $\,$ \begin{defn} \label{CategoryOfSingularities}\hypertarget{CategoryOfSingularities}{} \textbf{(category of singularities)} Write \begin{displaymath} Singularities \;\coloneqq\; Groupoids^{cn}_{1,fin} \hookrightarrow Groupoids_\infty \end{displaymath} for the [[(2,1)-category]] of [[connected object|connected]] [[homotopy type with finite homotopy groups|finite groupoids]]. A [[skeleton]] has [[objects]] labeled by [[finite groups]] $G$, and we will denote these objects \begin{displaymath} \mathbb{B}G \;\in\; Singularities \end{displaymath} to distinguish them from their image as [[delooping]] groupoids $\mathbf{B} G \in$ [[∞Grpd]]. (As we consider [[(∞,1)-presheaves]] on $Singularities$ with values in [[∞Groupoids]], in Prop. \ref{CohesionOfGlobalEquivariantHomotopyTheory} below, these two objects become crucially different, albeit closely related.) \end{defn} \begin{remark} \label{SingularitiesInTheLiterature}\hypertarget{SingularitiesInTheLiterature}{} The category $Singularities$ in Def. \ref{CategoryOfSingularities}, when generalized from [[finite groups]] to [[compact Lie groups]], is called \begin{itemize}% \item ``$Orb$ version 1'' in \href{orbispace#HenriquesGepner07}{Henriques-Gepner 07} \item ``$Glo$'' in \hyperlink{Rezk14}{Rezk 14, 2.2} \item ``$Orb$'' in \href{orbispace#Koerschgen16}{Körschgen 16}, \href{orbispace#Schwede17}{Schwede 17}, \href{global+equivariant+homotopy+theory#Schwede18}{Schwede 18}. \end{itemize} \end{remark} \begin{prop} \label{CohesionOfGlobalEquivariantHomotopyTheory}\hypertarget{CohesionOfGlobalEquivariantHomotopyTheory}{} \textbf{([[global equivariant homotopy theory]] [[cohesive (∞,1)-topos|cohesive]] over [[base (∞,1)-topos]])} Let $\mathbf{H}$ be any [[(∞,1)-topos]] and consider the [[(∞,1)-category of (∞,1)-presheaves]] on the category of singularities (Def. \ref{CategoryOfSingularities}) over the [[base (∞,1)-topos]] $\mathbf{H}$, hence the [[(∞,1)-functor (∞,1)-category]] \begin{displaymath} \mathbf{H}_{sing} \;\coloneqq\; Sh_\infty\big( Singularities, \mathbf{H}\big) \;=\; Funct\big( \Singularities^{op}, \mathbf{H}\big) \,. \end{displaymath} This is a [[cohesive (∞,1)-topos]] over the [[base (∞,1)-topos]] $\mathbf{H}$ in that the [[global section]]-[[geometric morphisms]] enhances to an [[adjoint quadruple]] of [[adjoint (∞,1)-functors]] \begin{equation} \big( \Pi_{sing} \dashv Disc_{sing} \dashv \Gamma_{sing} \dashv coDisc_{sing} \big) \;\colon\; \mathbf{H}_{sing} \leftrightarrow \mathbf{H} \label{SingularitiesAdjointQuadruple}\end{equation} such that \begin{enumerate}% \item $Disc_{sing}, coDisc_{sing} \;\colon\; \mathbf{H} \to \mathbf{H}_{sing}$ are [[fully faithful (∞,1)-functors]]; \item $\Pi_{sing}$ preserves [[finite products]]. \end{enumerate} hence inducing an [[adjoint triple]] of [[adjoint modalities]] \begin{displaymath} ʃ_{sing} \dashv \flat_{sing} \dashv \sharp_{sing} \;\colon\; \mathbf{H}_{sing} \to \mathbf{H}_{sing} \end{displaymath} (``[[shape modality|shape]]'', ``[[flat modality|flat]]'', ``[[sharp modality|sharp]]'' for singularities). Moreover, for $G$ a [[finite group]] regarded under the inclusion \begin{displaymath} G \in Grp \overset{Disc}\hookrightarrow Grp(\mathbf{H}) \overset{Disc_{sing}}{\hookrightarrow} Grp\left(\mathbf{H}_{sing}\right) \end{displaymath} and writing \begin{displaymath} \mathbf{B}G \in \mathbf{H}_{sing} \end{displaymath} for its [[delooping]] under $Grp\left( \mathbf{H}_{sing} \right) \underoverset{\simeq}{\mathbf{B}}{\longrightarrow} \mathbf{H}^{\ast/}_{cn}$, in constrast to the [[(∞,1)-Yoneda embedding]] \begin{displaymath} \mathbb{B}G \overset{y}{\longrightarrow} Sh_\infty\left( Singularities, \infty \mathrm{Grpd}\right) \overset{Disc}{\longrightarrow} Sh_\infty\left( Singularities, \mathbf{H}\right) \end{displaymath} we have \begin{equation} \begin{aligned} ʃ_{sing} \mathbb{B}G & \simeq\; \ast/G = \ast \\ \flat_{sing} \mathbb{B}G &\simeq\; \ast \sslash G = \mathbf{B}G \end{aligned} \label{ShapeOfOrbifoldSingularity}\end{equation} \end{prop} \begin{proof} This is immediate by general properties of left/right [[(∞,1)-Kan extension]], using the evident fact that $Singularities$ has [[finite products]] (the [[terminal object in an (∞,1)-category|terminal object]] is $\mathbb{B}1$ and the binary [[Cartesian product]] is give by forming [[direct product groups]]: $\left(\mathbb{B}G_1\right) \times \left( \mathbb{B}G_2\right) \simeq \mathbb{B}\left( G_1 \times G_2\right)$ ). The directly analogous 1-categorical argument is at \emph{[[infinity-cohesive site]]}. \end{proof} \begin{example} \label{}\hypertarget{}{} For $\mathbf{H} =$ [[∞Groupoids]] the [[cohesion]] of Prop. \ref{CohesionOfGlobalEquivariantHomotopyTheory} is that of plain [[globally equivariant homotopy theory]] (\hyperlink{Rezk14}{Rezk 14, 4.1}), i.e. without any geometric determination ([[geometrically discrete ∞-groupoids]]). \end{example} Conversely we have: \begin{prop} \label{SingularitiesAsCoDisc}\hypertarget{SingularitiesAsCoDisc}{} \textbf{([[orbifold]] [[singularities]] are the [[codiscrete object|codiscrete]] aspect of [[homotopy quotients]]}) Let $\mathbf{H}$ itself be a [[cohesive (∞,1)-topos]] over [[∞Groupoids]] \begin{displaymath} (\Pi \dashv Disc \dashv \Gamma \dashv coDisc) \;\colon\; \mathbf{H} \leftrightarrow \infty Groupoids \,. \end{displaymath} Then in the situation of Prop. \ref{CohesionOfGlobalEquivariantHomotopyTheory} \begin{displaymath} coDisc_{sing} \mathbf{B}G \;\simeq\; \mathbb{B}G \,. \end{displaymath} \end{prop} \begin{proof} Let $\mathcal{S}$ be a cohesive [[(∞,1)-site]] of definition for $\mathbf{H}$, so that \begin{displaymath} \mathbf{H}_{sing} \;\simeq\; Sh_\infty \left( \mathcal{S} \times Singularities \;,\; \infty Groupoids \right) \end{displaymath} and $\Pi(S) \simeq \ast$ for $S \in \mathcal{S} \overset{y}{\hookrightarrow} \mathbf{H}$. Then as [[(∞,1)-presheaves]] regarded this way we have \begin{displaymath} \begin{aligned} coDisc_{sing} \mathbf{B}G \;\colon\; S \times \mathbb{B}K & \mapsto \mathbf{H}_{sing}\left( S \times \mathbb{B}K, coDisc_{sing} Disc \mathbf{B}G \right) \\ & \simeq \mathbf{H}\big( S \times \underset{ \simeq \mathbf{B}K }{ \underbrace{ \Gamma_{sing}\left( \mathbb{B}K\right) }} , Disc \mathbf{B}G \big) \\ & \simeq \infty Groupoids\big( \underset{ \simeq \mathbf{B}K }{ \underbrace{ \Pi(S \times \mathbf{B}K) }} \,, \mathbf{B}G \big) \\ & \simeq \infty Groupoids\left( \mathbf{B} K, \mathbf{B}G \right) \\ & \simeq \mathbf{H}_{sing}\big( \mathbb{B}K, \mathbb{B}G \big) \\ & \simeq \mathbf{H}_{sing}\big( S \times \mathbb{B}K, \mathbb{B}G \big) \end{aligned} \end{displaymath} Here we used the various [[(∞,1)-adjunctions]] and the [[(∞,1)-Yoneda lemma]], and the claim in turn follows by the [[(∞,1)-Yoneda lemma]]. \end{proof} $\,$ \hypertarget{EquivariantCohesiveToposes}{}\subsubsection*{{$G$-Equivariant cohesive toposes}}\label{EquivariantCohesiveToposes} In order to speak of $G$-[[equivariant homotopy theory]] (Def. \ref{GEquivariantHomotopyTheoryOfCohesiveInfinityTopos} below) inside [[globally equivariant homotopy theory]] (Prop. \ref{CohesionOfGlobalEquivariantHomotopyTheory} above) we need a certain concept of faithfulness (Def. \ref{SingularitiesFaithful} below). For that purpose, recall that in an [[(∞,1)-topos]] the [[pair]] of [[classes]] of [[n-connected object in an (∞,1)-topos|n-connected morphisms]] and [[n-truncated object in an (∞,1)-category|n-truncated morphisms]] for an [[orthogonal factorization system in an (∞,1)-category|orthogonal factorization system]] for all $n \in \{-2,-1\} \sqcup \mathbb{N} \sqcup \{\infty\}$. In particular this says that a [[1-morphism]] in an [[(∞,1)-topos]] is [[n-truncated object in an (infinity,1)-category|0-truncated]] precisely if it has the [[right lifting property]] against every morphism that is [[n-connected object of an (infinity,1)-topos|0-connected]]. $\,$ Just for the record: \begin{lemma} \label{GammaPreservesnTruncatedMorphisms}\hypertarget{GammaPreservesnTruncatedMorphisms}{} \textbf{($\Gamma_{sing}$ preserves [[n-truncated object in an (∞,1)-category|n-truncated morphisms]])} Let $\mathbf{H}$ be a [[cohesive (∞,1)-topos]] with $\mathbf{H}_{sing}$ its [[globally equivariant homotopy theory]] from Prop. \ref{CohesionOfGlobalEquivariantHomotopyTheory}. Then in particular the functor \eqref{SingularitiesAdjointQuadruple} \begin{displaymath} \Gamma_{sing} \;\colon\; \mathbf{H}_{sing} \longrightarrow \mathbf{H} \end{displaymath} preserves [[n-truncated object in an (∞,1)-category|n-truncated morphisms]] for all $n$. \end{lemma} \begin{proof} By the [[(n-connected, n-truncated) factorization system]] and the [[adjunctions]] in \eqref{SingularitiesAdjointQuadruple} the statement is equivalent to \begin{displaymath} Disc_{sing} \;\colon\; \mathbf{H} \longrightarrow \mathbf{H}_{sing} \end{displaymath} preserving [[n-connected object in an (∞,1)-topos|n-connected morphisms]]. These are [[effective epimorphisms in an (∞,1)-category]] satisfying an extra condition. Both the definition of effective epimorphisms as well as that extra conditions are entirely formulated in terms of [[(∞,1)-limits]] and [[(∞,1)-colimits]] (\href{n-connected+object+of+an+infinity-topos#CharacterizationByDiagonal}{this Prop.}). Since $Disc_{sing}$ is both a left and a right [[adjoint (∞,1)-functor]] by \eqref{SingularitiesAdjointQuadruple} it preserves all these. \end{proof} \begin{example} \label{EsoAndFullToFaithfulFactoriazation}\hypertarget{EsoAndFullToFaithfulFactoriazation}{} \textbf{(on [[groupoids]] [[(n-connected, n-truncated) factorization system|(0-connected, 0-truncated)]] is [[(eso and full, faithful) factorization system|(eso and full, faithful)]])} In the [[(∞,1)-topos]] [[∞Groupoids]] the [[n-truncated object in an (infinity,1)-category|1-truncated objects]] are equivalently [[groupoids]] in the sense of [[small categories]] with all [[morphisms]] [[invertible morphism|invertible]] \begin{displaymath} Groupoids \simeq \infty Groupoids_{\leq 1} \hookrightarrow \infty Groupoids \end{displaymath} Under this identification the [[1-morphisms]] between 1-truncated objects correspond equivalently [[functors]], and we have that these [[1-morphisms]] are \begin{enumerate}% \item [[n-truncated object in an (infinity,1)-category|0-truncated]] precisely if they correspond to [[faithful functors]]; \item [[n-connected object of an (infinity,1)-topos|0-connected]] precisely if they correspond to [[essentially surjective functor|essentially surjective]] and [[full functors]]. \end{enumerate} In particular a morphism of [[delooping]] groupoids \begin{equation} \itexarray{ \mathbf{B} G' \\ \downarrow^{\mathrlap{\mathbf{B} p}} \\ \mathbf{B} G } \label{BGPrimeToBG}\end{equation} is a 0-connected morphism in $\infty Groupoids$ precisely if the corresponding [[group homomorphism]] $p \colon G' \to G$ is [[surjective function|surjective]]. \end{example} Therefore one might say ``[[faithful morphism]]'' for every [[n-truncated object in an (infinity,1)-category|0-truncated]] morphism in an [[(∞,1)-topos]]. But the terminology ``faithful'' is used with other meanings, too, and we need to refer to these variants \begin{defn} \label{SingularitiesFaithful}\hypertarget{SingularitiesFaithful}{} \textbf{($Singularities$-faithful morphisms)} Let $\mathbf{H}$ be a [[cohesive (∞,1)-topos]] with $\mathbf{H}_{sing} \coloneqq Sh_\infty\left( Singularities, \mathbf{H}\right)$ its [[globally equivariant homotopy theory]] according to Prop. \ref{CohesionOfGlobalEquivariantHomotopyTheory}. We say that a morphism $\mathcal{X} \overset{f}{\to} \mathcal{Y}$ in $\mathbf{H}_{sing}$ is \emph{$Singularities$-faithful} if it has the [[right lifting property]] against morphisms of the form \begin{equation} \left( \itexarray{ \mathbb{B}G' \\ \downarrow^{\mathrlap{\mathbb{B}p}} \\ \mathbb{B}G } \phantom{{}^{\mathbb{B}^p}} \right) \;\in\; Singularities \overset{Yoneda}{\hookrightarrow} Sh_\infty\left( Singularities, \infty Groupoids \right) \overset{Disc}{\hookrightarrow} Sh_\infty\left( Singularities, \mathbf{H} \right) \;=\; \mathbf{H}_{sing} \label{Singularities0Connected}\end{equation} where $p \;\colon\; G' \to G$ is a \emph{[[surjective function|surjective]]} [[group homomorphism]]. \end{defn} For the case $\mathbf{H} =$ [[∞Groupoids]] this is the definition of \emph{faithful maps} in \hyperlink{Rezk14}{Rezk 14. Prop. 3.4.1}. \begin{quote}% It seems that the morphisms \eqref{Singularities0Connected} are not in general 0-connected in $Sh_\infty(Singularities, \infty Groupoids)$. Them being 0-connected should come down to the statement that for $p \colon G' \to G$ a surjective group homomorphism and $H \subset G$ any subgroup, there always is a lift of $H$ to $G'$ and that any two such lifts are conjugate to each other, in $G'$. But already the first condition fails in general, since not every epimorphism of groups is a [[split epimorphism]]. Nevertheless and in any case we have the following, which is all we will need: \end{quote} \begin{prop} \label{coDiscSingOf0TruncatedMorphismsIsSingularitiesFaithful}\hypertarget{coDiscSingOf0TruncatedMorphismsIsSingularitiesFaithful}{} \textbf{($coDisc_{sing}$ of a 0-truncated morphism is $Singularities$-faithful)} Let $\mathbf{H}$ be a [[cohesive (∞,1)-topos]] with $\mathbf{H}_{sing}$ its [[globally equivariant homotopy theory]] according to Prop. \ref{CohesionOfGlobalEquivariantHomotopyTheory}. If a morphism $X \overset{f}{\to} Y$ in $\mathbf{H}$ is [[n-truncated object in an (infinity,1)-category|0-truncated]], then its image under $coDisc_{sing} \;\colon\; \mathbf{H} \hookrightarrow \mathbf{H}_{sing}$ is $Singularities$-faithful (Def. \ref{SingularitiesFaithful}). \end{prop} \begin{proof} This follows by the adjunctions \eqref{SingularitiesAdjointQuadruple}, the relations \eqref{ShapeOfOrbifoldSingularity} and the fact \eqref{BGPrimeToBG}: \begin{displaymath} \phantom{{}^{\mathbb{B}p}} \itexarray{ \mathbb{B}G' &\longrightarrow& coDisc_{sing}(X) \\ {}^{\mathllap{\mathbb{B}p}}\big\downarrow &\nearrow& \big \downarrow^{\mathrlap{ coDisc_{sing}(f) }} \\ \mathbb{B}G &\longrightarrow& coDisc_{sing}(Y) } \phantom{AAAA} \;\Leftrightarrow\;\; \phantom{A} \phantom{{}^{\mathbb{B}p}} \itexarray{ \Gamma_{sing}\left(\mathbb{B}G'\right) &\longrightarrow& X \\ {}^{\mathllap{\Gamma_{sing}\left(\mathbb{B}p\right)}}\big\downarrow &\nearrow& \big \downarrow^{\mathrlap{ f }} \\ \Gamma_{sing}\left(\mathbb{B}G\right) &\longrightarrow& Y } \phantom{AA} \;\;\simeq\;\; \phantom{A} \itexarray{ \mathbf{B} G' &\longrightarrow& X \\ {}^{\mathllap{\mathbf{B}p}}\big\downarrow &\nearrow& \big \downarrow^{\mathrlap{ f }} \\ \mathbf{B} G &\longrightarrow& Y } \end{displaymath} \end{proof} \begin{defn} \label{GlobalOrbitCategory}\hypertarget{GlobalOrbitCategory}{} \textbf{([[global orbit category]])} Write \begin{displaymath} GlobalOrbits \;\coloneqq\; Singularities^{faith} \end{displaymath} for the wide non-[[full sub-(infinity,1)-category]] of $Singularities$ (Def. \ref{CategoryOfSingularities}) with the same [[objects]] $\mathbb{B}G$ but the [[1-morphisms]] required to be 0-truncated as morphisms of $\infty$-groupods, hence to be faithful functors of groupoids (Example \ref{EsoAndFullToFaithfulFactoriazation}), hence to come from \emph{[[injective function|injective]]} [[group homomorphisms]]. \end{defn} \begin{remark} \label{}\hypertarget{}{} The category $GlobalOrbits$ in Def. \ref{GlobalOrbitCategory}, when generalized from [[finite groups]] to [[compact Lie groups]], is called \begin{itemize}% \item ``$Orb$ version 2'' in \href{orbispace#HenriquesGepner07}{Henriques-Gepner 07} \item ``$Orb$'' in \hyperlink{Rezk14}{Rezk 14, 4.5} \end{itemize} and is \emph{not} the category called ``$Orb$'' in \href{orbispace#Koerschgen16}{Körschgen 16}, \href{orbispace#Schwede17}{Schwede 17}, \href{global+equivariant+homotopy+theory#Schwede18}{Schwede 18} (see Remark \ref{SingularitiesInTheLiterature}). \end{remark} \begin{prop} \label{GorbitCategory}\hypertarget{GorbitCategory}{} \textbf{([[slice (∞,1)-category|slice]] of [[global orbit category|global orbits]] is $G$-[[orbit category|orbits]])} For $G$ a [[finite group]], the [[slice (∞,1)-category|slice]] of the [[global orbit category]] from Def. \ref{GlobalOrbitCategory} over the object $\mathbb{B}G$ is [[equivalence of (∞,1)-categories|equivalent]] to the $G$-[[orbit category]] \begin{displaymath} GlobalOrbits_{/\mathbb{B}G} \;\simeq\; G Orbits \end{displaymath} \end{prop} \begin{defn} \label{GEquivariantHomotopyTheoryOfCohesiveInfinityTopos}\hypertarget{GEquivariantHomotopyTheoryOfCohesiveInfinityTopos}{} \textbf{($G$-[[equivariant homotopy theory]] of a [[cohesive (∞,1)-topos]])} For $\mathbf{H}$ a [[cohesive (∞,1)-topos]] and $G$ a [[finite group]] we say that the \emph{$G$-[[equivariant homotopy theory]] of $\mathbf{H}$} is the [[(∞,1)-presheaf (∞,1)-topos]] on the $G$-[[orbit category]] (Def. \ref{GorbitCategory}) over $\mathbf{H}$: \begin{displaymath} \begin{aligned} \mathbf{H}_G &\coloneqq\; Sh_\infty\big( G Orbits , \mathbf{H} \big) \\ & \simeq Sh_\infty\big( GlobalOrbits_{/\mathbb{B}G} , \mathbf{H} \big) \\ & \simeq Sh_\infty\big( GlobalOrbits , \mathbf{H} \big)_{/\mathbb{B}G} \end{aligned} \end{displaymath} On the right we are displaying immediate [[equivalence of (∞,1)-categories|equivalences]], the first by Prop. \ref{GorbitCategory}, the second by the general slicing behaviour of $\infty$-toposes (\href{slice+homotopy-topos#SlicingCommutesWithPassingToPresheaves}{this Prop.}). \end{defn} The relation between the [[global homotopy theory]] $\mathbf{H}_{sing}$ (Prop. \ref{CohesionOfGlobalEquivariantHomotopyTheory}) and the $G$-[[equivariant homotopy theory]] $\mathbf{H}_G$ (Def. \ref{GEquivariantHomotopyTheoryOfCohesiveInfinityTopos}) is the topic of \hyperlink{Rezk14}{Rezk 14}: \begin{defn} \label{NormalSubgroupClassifier}\hypertarget{NormalSubgroupClassifier}{} \textbf{([[normal subgroup]] classifier, \hyperlink{Rezk14}{Rezk 14, 4.1})} For $\mathbf{H}$ a [[cohesive (∞,1)-topos]], let \begin{displaymath} \mathcal{N} \;\in\; Sh\big(Singularities, Sets \big) \hookrightarrow Sh_\infty\big(Singularities, \infty Groupoids \big) \overset{}{\hookrightarrow} Sh_\infty\big( Singularities, \mathbf{H} \big) \end{displaymath} be the presheaf which to any [[finite group]] $\mathbb{B}G$ assigns the [[set]] (i.e. [[0-groupoid]]) of [[normal subgroups]] of $G$. \end{defn} \begin{prop} \label{SingularitiesFaithfulSliceOverNormalSubgroupClassifier}\hypertarget{SingularitiesFaithfulSliceOverNormalSubgroupClassifier}{} \textbf{(\hyperlink{Rezk14}{Rezk 14})} For $\mathbf{H}$ an [[(∞,1)-topos]], with $\mathbf{H}_{sing} \coloneqq Sh_\infty\big( Singularities, \mathbf{H}\big)$ its [[global equivariant homotopy theory]] according to Prop. \ref{CohesionOfGlobalEquivariantHomotopyTheory}, there is an [[equivalence of (∞,1)-categories]] \begin{displaymath} \itexarray{ Sh_\infty\big( GlobalOrbits, \mathbf{H}\big) &\overset{\simeq}{\longrightarrow}& \left( Sh_\infty\big( Singularities, \mathbf{H}\big)_{/\mathcal{N}} \right)_{\text{singfaith}} \;=\; \left( \left( \mathbf{H}_{sing} \right)_{/\mathcal{N}} \right)_{singfaith} } \end{displaymath} between the [[(∞,1)-presheaf (∞,1)-category]] on the [[global orbit category]] according to Def. \ref{GlobalOrbitCategory} and the [[full sub-(∞,1)-category]] of the [[slice (∞,1)-topos]] of $\mathbf{H}_{sing}$ over the normal subgroup classifier $\mathcal{N}$ (Def. \ref{NormalSubgroupClassifier}) on those morphisms to $\mathcal{N}$ which are $Singularities$-faithful according to Def. \ref{SingularitiesFaithful}. Moreover, if $G$ is a [[finite group]] then slicing over $\mathbb{B}G$ this yields an equivalence \begin{displaymath} \itexarray{ \mathbf{H}_G \;\simeq\; \left( \left( \mathbf{H}_{sing} \right)_{/\mathbb{B}G} \right)_{singfaith} } \end{displaymath} between the $G$-[[equivariant homotopy theory]] $\mathbf{H}_G$ (Def. \ref{GEquivariantHomotopyTheoryOfCohesiveInfinityTopos}) and the [[full sub-(∞,1)-category]] on the $Singularities$-faithful objects of the [[slice (∞,1)-category|slice]] of the [[global homotopy theory]] $\mathbf{H}_{sing}$ (Prop. \ref{CohesionOfGlobalEquivariantHomotopyTheory}) over $\mathbb{B}G$. \end{prop} \hypertarget{OnOrbifolds}{}\subsubsection*{{Orbifolds}}\label{OnOrbifolds} With [[cohesion|cohesive]] [[globally equivariant homotopy theory]] in place, there is now an elegant definition of [[orbifolds]] (Def. \ref{Orbifold} below) which, being fully \emph{[[synthetic mathematics|synthetic]]} makes manifest good defining properties of the [[category]] of [[orbifolds]] (Remark \ref{OrbifoldsInGloballyEquivariantStillEquivalentToGeometricGroupoids} below). Not directly evident is that under passing to [[shape modality|shapes]] (underlying [[globally equivariant homotopy theory|globally equivariant]] [[geometrically discrete ∞-groupoids]]) this definition is compatible with the standard embedding of [[G-spaces]] into [[globally equivariant homotopy theory]]. That this indeed is the case is confirmed in Example \ref{GlobalHomotopyQuotientsOfSmoothManifolds} below. $\,$ \begin{defn} \label{Orbifold}\hypertarget{Orbifold}{} \textbf{([[orbifold]]}) Let $\mathbf{H}$ be a [[cohesive (∞,1)-topos]] with $\mathbf{H}_{sing}$ its corresponding [[globally equivariant homotopy theory]] according to Prop. \ref{CohesionOfGlobalEquivariantHomotopyTheory}. For $G \in Grp(\mathbf{H})$ a [[finite group]] we say that an \emph{orbifold with singularities ([[isotropy groups]]) in $G$} is an [[object]] of the [[slice (∞,1)-topos]] \begin{displaymath} \mathcal{X} \;\in\; \left(\mathbf{H}_{sing}\right)_{/\mathbb{B}G} \end{displaymath} which is \begin{enumerate}% \item [[n-truncated object in an (infinity,1)-category|0-truncated]] (as an object of the [[slice (infinity,1)-topos|slice]]); \item $\sharp_{sing}$-[[modal object|modal]] (hence ``$Singularity$-[[codiscrete object|codiscrete]]''). \end{enumerate} Given such an orbifold, we say that its \emph{underlying [[geometric stack|geometric groupoid]]} is its $Singularities$-[[flat modality|flat]] aspect: \begin{equation} \flat_{sing}\left( \mathcal{X}\right) \;\in\; \mathbf{H}_{/\mathbf{B}G} \overset{Disc_{sing}}{\hookrightarrow} \left( \mathbf{H}_{sing} \right)_{/\mathbb{B}G} \label{OrbifoldUnderlyingGroupoid}\end{equation} where on the right we used \eqref{ShapeOfOrbifoldSingularity}. If $\mathbf{H}$ is moreover [[differential cohesion|differentially cohesive]] and $V \in Grp(\mathbf{H})$ is a [[∞-group|group object]], then an orbifold $\mathcal{X}$ is called a \emph{$V$-orbifold} if its underlying [[geometric stack|geometric groupoid]] $\flat_{sing}\left( \mathcal{X}\right)$ \eqref{OrbifoldUnderlyingGroupoid} is a [[V-manifold]]. \end{defn} \begin{example} \label{GlobalHomotopyQuotientOrbifold}\hypertarget{GlobalHomotopyQuotientOrbifold}{} \textbf{(global [[homotopy quotient]]-[[orbifolds]])} Let $X \in \mathbf{H}$ be [[n-truncated object in an (infinity,1)-category|0-truncated]] and equipped with a $G$-[[∞-action|action]], with [[homotopy quotient]] $(X \sslash \mathbf{B}G \to \mathbf{B}G) \in \mathbf{H}_{/\mathbf{B}G}$. Then \begin{displaymath} \mathcal{X} \;\coloneqq\; coDisc_{sing} \left( \itexarray{ X \sslash G \\ \downarrow \\ \mathbf{B}G } \right) \;\simeq\; \left( \itexarray{ coDisc_{sing}\left( X\sslash G\right) \\ \downarrow \\ \mathbb{B}G } \right) \end{displaymath} is an [[orbifold]] with isotropy groups in $G$, according to Def. \ref{Orbifold}. Here on the right we identified the slice using Prop. \ref{SingularitiesAsCoDisc}. \end{example} As a further special case: \begin{example} \label{GlobalHomotopyQuotientsOfSmoothManifolds}\hypertarget{GlobalHomotopyQuotientsOfSmoothManifolds}{} \textbf{(global [[homotopy quotient]]-[[orbifolds]] of [[smooth manifolds]])} Let $\mathbf{H} \coloneqq$ [[Smooth∞Groupoids]]. For $G$ a [[finite group]], let $X$ be a [[smooth manifold]] equipped with a smooth $G$-[[action]]. Under the canonical embedding into $\mathbf{H}$ the corresponding [[action groupoid]] is a 0-truncated object \begin{displaymath} \left( \itexarray{ X \sslash G \\ \downarrow \\ \mathbf{B}G } \right) \;\in\; Smooth\infty Groupoids_{/\mathbf{B}G} \end{displaymath} as in Example \ref{GlobalHomotopyQuotientOrbifold}, and hence its $Singularities$-[[codiscrete object|codiscrete]] image is a [[orbifold]] in the sense of Def. \ref{Orbifold}: \begin{displaymath} \mathcal{X} \;\coloneqq\; \left( \itexarray{ coDisc_{sing}\big(X \sslash G \big) \\ \downarrow \\ \mathbb{B}G } \right) \;\in\; \left( Smooth\infty Groupoids_{sing} \right)_{/\mathbb{B}G} \,. \end{displaymath} We claim that the [[shape modality|shape]] of this orbifold in plain [[global equivariant homotopy theory]] coincides with the global equivariant homotopy type associated with the [[G-space]] underlying $X$ \begin{displaymath} ʃ coDisc_{sing}\left( X \sslash G \right) \;\simeq\; \Delta_G\big( X \big) \;\in\; Sh_\infty\big( Singularities, \infty Groupoids \big) \,, \end{displaymath} where on the right $\Delta_G$ is as in \hyperlink{Rezk14}{Rezk 14, 3.2} \end{example} \begin{proof} The key point is that the assumption of 0-truncation of $\mathcal{X}$ and the restriction to [[finite groups|finite]] (hence [[discrete groups|discrete]]) groups ensures that $coDisc_{sing}$ forms the correct [[fixed point]] [[sheaves]], whose separate [[shape modality|shape]]/[[geometric realization]] then coincides with the relevant fixed point spaces of $X$. In detail, as $\infty$-groupoid-valued presheaves on the product site [[CartSp]] $\times Singularities$ we have \begin{displaymath} \begin{aligned} coDisc_{sing}\big( X\sslash G\big) \;\colon\; \mathbb{R}^n \times \mathbb{B}K & \mapsto\; \infty Groupoids\big( \mathbf{B}K, \underset{ \in 1Groupoid }{ \underbrace{ \underset{\in Set}{ \underbrace{C^\infty(\mathbb{R}^n, X)} } } } \sslash G \big) \\ & \simeq \; \underset{ \simeq Grpd(Set) }{ \underbrace{ 1 Groupoids } } \big( \mathbf{B}K, C^\infty(\mathbb{R}^n, X) \sslash G \big) \\ & \simeq \; \underset{\phi \in Groups(K,G)}{\bigsqcup} C^\infty(\mathbb{R}^n, X^{\phi(K)}) \sslash G \end{aligned} \end{displaymath} where in the first step we used the [[adjunction]] $(\Gamma_{sing} \dashv coDisc_{sing})$ as in Prop. \ref{SingularitiesAsCoDisc}. Hence as smooth $\infty$-groupoid valued presheaves on just $Singularities$ this is \begin{displaymath} \Big( coDisc_{sing}\big( X \sslash G \big) \;\colon\; \mathbb{B}K \;\mapsto\; \underset{\phi \in Groups(K,G)}{\bigsqcup} X^{\phi(K)} \sslash G \Big) \;\in\; Sh_\infty\big( Singularities, Smooth\infty Groupoids \big) \,. \end{displaymath} Now [[shape modality|shape]] is [[left adjoint]], hence preserves the [[coproducts]] and the [[homotopy quotient]] by $G$ and finally also $G$ itself ($G$ being [[discrete group|discrete]], and preserving the point (the [[terminal object]]), by [[cohesion]]), so that in conclusion \begin{displaymath} \Big( ʃ coDisc_{sing}\big( X \sslash G \big) \;\colon\; \mathbb{B}K \;\mapsto\; \underset{\phi \in Groups(K,G)}{\bigsqcup} ʃ \left(X^{\phi(K)}\right) \sslash G \Big) \;\in\; Sh_\infty\big( Singularities, \infty Groupoids \big) \,. \end{displaymath} But this is exactly the formula for $\Delta_G (X)$, as in \hyperlink{Rezk14}{Rezk 14, 3.2}. \end{proof} \begin{prop} \label{OrbifoldsInEquivariantHomotopyTheory}\hypertarget{OrbifoldsInEquivariantHomotopyTheory}{} \textbf{([[orbifolds]] are in [[cohesion|cohesive]] [[equivariant homotopy theory]])} An [[orbifold]] $\mathcal{X}$ with isotropy groups in $G$, according to Def. \ref{Orbifold} is $Singularities$-faithful over $\mathbb{B}G$ (Def. \ref{SingularitiesFaithful}) and hence inside the inclusion (from Prop. \ref{SingularitiesFaithfulSliceOverNormalSubgroupClassifier}) of the $G$-[[equivariant homotopy theory]] of $\mathbf{H}$ (Def. \ref{GEquivariantHomotopyTheoryOfCohesiveInfinityTopos}) into the [[globally equivariant homotopy theory]] of $\mathbf{H}$: \begin{displaymath} \mathcal{X} \;\in\; \mathbf{H}_G \;\hookrightarrow\; \left( \mathbf{H}_{sing} \right)_{/\mathbb{B}G} \end{displaymath} \end{prop} \begin{proof} By Prop. \ref{SingularitiesFaithfulSliceOverNormalSubgroupClassifier} we need to check that $\mathcal{X} \to \mathbb{B}G$ is $Singularities$-faithful. Now, by the first defining assumption on $\mathcal{X}$ (Def. \ref{Orbifold}) and by Lemma \ref{GammaPreservesnTruncatedMorphisms}, we have that $\Gamma_{sing}(\mathcal{X} \to \mathbb{B}G)$ is [[n-truncated object in an (infinity,1)-category|0-truncated]]. By [[cohesion]] \eqref{SingularitiesAdjointQuadruple} we have $coDisc_{sing} \circ \Gamma_{sing} \;\simeq\; Id$ and hence $\mathcal{X} \to \mathbb{B}G$ is the image under $coDisc_{sing}$ of a 0-truncated morphism. With this the statement follows by Prop. \ref{coDiscSingOf0TruncatedMorphismsIsSingularitiesFaithful}. \end{proof} \begin{remark} \label{OrbifoldsInGloballyEquivariantStillEquivalentToGeometricGroupoids}\hypertarget{OrbifoldsInGloballyEquivariantStillEquivalentToGeometricGroupoids}{} \textbf{([[orbifolds]] inside [[globally equivariant homotopy theory]] are still [[equivalence of (infinity,1)-categories|equivalent]] to [[cohesive (infinity,1)-topos|cohesive groupoids]])} Since $coDisc_{sing} \;\colon\; \mathbf{H} \hookrightarrow \mathbf{H}_{sing}$ is a [[full sub-(∞,1)-category]]-inclusion, the [[(2,1)-category]] of $V$-[[orbifolds]] inside $\mathbf{H}_{sing}$ according to Def. \ref{Orbifold} is equivalent to its pre-image in $\mathbf{H}$, hence will coincide, for suitable choices of $\mathbf{H}$ and $V \in Grp(\mathbf{H})$, with traditional definition of [[(2,1)-categories]] of orbifolds regarded as certain [[geometric stacks|geometric groupoids]]. But by embedding this into the larger [[global homotopy theory]] $\mathbf{H}_{sing}$ of $\mathbf{H}$ more general [[coefficient]]-objects for orbifold cohomology become available, and this brings in the previously missing [[Bredon cohomology|Bredon]]-[[equivariant cohomology]]-aspect of orbifold cohomology. \end{remark} $\,$ \hypertarget{orbifold_cohomology}{}\subsubsection*{{Orbifold cohomology}}\label{orbifold_cohomology} With [[orbifolds]] properly realized in [[cohesion|cohesive]] [[globally equivariant homotopy theory]] by the \hyperlink{OnOrbifolds}{above}, the proper definition of \emph{orbifold cohomology} is now immediate, by the general logic of [[cohomology]] in [[(∞,1)-toposes]], this is Def. \ref{OrbifoldCohomology} below. What needs checking is that this definition, in the special case that the [[coefficient]] object is [[geometrically discrete infinity-groupoid|geometrically discrete]] reproduces [[Bredon cohomology|Bredon]] [[equivariant cohomology]] of the underlying bare [[homotopy type]] of the orbifold. But this follows readily with the general considerations above, this is Example \ref{OrbifoldCohomologyWithGeometricallyDiscreteCoefficients} below. $\,$ \begin{defn} \label{OrbifoldCohomology}\hypertarget{OrbifoldCohomology}{} \textbf{(orbifold cohomology)} Let $\mathbf{H}$ be a [[cohesive (∞,1)-topos]] and write $\mathbf{H}_{sing}$ for its [[globally equivariant homotopy theory]] as in Prop. \ref{CohesionOfGlobalEquivariantHomotopyTheory}. Let $G$ be a [[finite group]] and consider an [[orbifold]] with [[isotropy groups]]/[[singularities]] in $G$, according to Def. \ref{Orbifold}: \begin{displaymath} \mathcal{X} \;\in\; \left( \mathbf{H}_{sing} \right) \,. \end{displaymath} Then for \begin{displaymath} \mathcal{A} \;\in\; \left( \mathbf{H}_{sing} \right) \end{displaymath} any other object (\emph{not} necessarily itself an orbifold, and typically far from being so) the \emph{orbifold cohomology} of $\mathcal{X}$ with [[coefficients]] in $\mathcal{A}$ is the [[cohomology]] as given by the ambient [[(∞,1)-topos]], hence \begin{displaymath} H\big( \mathcal{X}, \mathcal{A} \big) \;\coloneqq\; \left( \mathbf{H}_{sing} \right)_{/\mathbb{B}G} \big( \mathcal{X}, \mathcal{A}\big) \,. \end{displaymath} \end{defn} We check the two desiderata for a good definition of orbifold cohomology discussed \hyperlink{Idea}{above}: \begin{enumerate}% \item It is clear that on objects in the inclusion $Disc_{sing} \;\colon\; \mathbf{H} \hookrightarrow \mathbf{H}_{sing}$ orbifold cohomology reduces to geometric cohomology on $\mathbf{H}$. \item In the other extreme, for orbifold cohomology with geometrically discrete coefficients, we check that we re-obtain [[Bredon cohomology|Bredon]] [[equivariant cohomology]] of the underlying [[G-spaces]]: \end{enumerate} \begin{example} \label{OrbifoldCohomologyWithGeometricallyDiscreteCoefficients}\hypertarget{OrbifoldCohomologyWithGeometricallyDiscreteCoefficients}{} \textbf{([[orbifold cohomology]] with [[geometrically discrete infinity-groupoid|geometrically discrete]] [[coefficients]] is $G$-[[equivariant cohomology]])} Let $\mathbf{H} =$ [[Smooth∞Groupoids]] and consider a [[smooth manifold]] $X$ equipped with smooth [[action]] by a [[finite group]] $G$, regarded as an [[orbifold]] as in Example \ref{GlobalHomotopyQuotientsOfSmoothManifolds}: \begin{displaymath} \mathcal{X} \;\coloneqq\; \left( \itexarray{ coDisc_{sing}\big( X \sslash G \big) \\ \downarrow \\ \mathbb{B}G } \right) \;\in\; \Big( Smooth \infty Groupoids_{sing} \Big)_{/\mathbb{B}G} \,. \end{displaymath} Let moreover \begin{displaymath} \mathcal{A} \;\in\; \Big( \infty Groupoids \Big)_{G} \overset{Disc}{\hookrightarrow} \Big( Smooth \infty Groupoids \Big)_{G} \hookrightarrow \Big( Smooth \infty Groupoids_{sing} \Big)_{/\mathbb{B}G} \end{displaymath} be any [[geometrically discrete infinity-groupoid|geometrically discrete]] [[coefficient]] object in $G$-[[equivariant homotopy theory]], included into the [[slice (infinity,1)-topos|slice]] of the [[global equivariant homotopy theory]] via Prop. \ref{GorbitCategory}. Then the [[orbifold cohomology]] of $\mathcal{X}$ with [[coefficients]] in $\mathcal{A}$, according to Def. \ref{OrbifoldCohomology}, coincides with the [[Bredon cohomology|Bredon]] $G$-[[equivariant cohomology]] of the [[G-space]] underlying $X$: \begin{displaymath} H\big( \mathcal{X}, Disc(\mathcal{A}) \big) \;\simeq\; H_G\big( X, \mathcal{A} \big) \,. \end{displaymath} \end{example} \begin{proof} We compute \begin{displaymath} \begin{aligned} \left(Smooth \infty Groupoids_{sing}\right)_{/\mathbb{B}G} \left( \mathcal{X}, Disc(\mathcal{A}) \right) & \simeq Smooth \infty Groupoids_G \left( \mathcal{X}, Disc(\mathcal{A}) \right) \\ & \simeq \infty Groupoids_G \left( ʃ_{sing}\mathcal{X}, \mathcal{A} \right) \end{aligned} \end{displaymath} where the first step is by Prop. \ref{OrbifoldsInEquivariantHomotopyTheory}, while the second is by the [[cohesion]] [[adjunction]] $ʃ \dashv Disc$ for [[Smooth∞Groupoids]]. By Example \ref{GlobalHomotopyQuotientsOfSmoothManifolds} we have that $ʃ \mathcal{X} \in \infty Groupoids_G$ is indeed the [[G-space]] $X$ regarded in $G$-[[equivariant homotopy theory]]. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[orbifold]] \item [[Gromov-Witten theory]] \end{itemize} History According to \hyperlink{Abramovich05}{Abramovich 05, p. 42}: \begin{quote}% On December 7, 1995 [[Maxim Kontsevich]] delivered a history-making lecture at Orsay, titled \emph{String Cohomology}. This is what is now know, after \hyperlink{ChenRuan00}{Chen-Ruan 00}, as \emph{orbifold cohomology}, Kontsevich's lecture notes described the orbifold and [[quantum cohomology]] of a global quotient [[orbifold]]. Twisted sectors, the age grading, and a version of orbifold stable maps for global quotients are all there. \end{quote} The same lecture also introduced \emph{[[motivic integration]]}. \hypertarget{references}{}\subsection*{{References}}\label{references} Discussion of orbifold cohomology in the context of [[Bredon cohomology|Bredon]]/[[global equivariant homotopy theory|global]] [[equivariant cohomology]] includes \begin{itemize}% \item [[Dorette Pronk]], [[Laura Scull]], \emph{Translation Groupoids and Orbifold Bredon Cohomology}, Canad. J. Math. 62(2010), 614-645 (\href{https://arxiv.org/abs/0705.3249}{arXiv:0705.3249}, \href{https://doi.org/10.4153/CJM-2010-024-1}{doi:10.4153/CJM-2010-024-1}) \item [[Stefan Schwede]], \emph{Orbispaces, orthogonal spaces, and the universal compact Lie group} (\href{https://arxiv.org/abs/1711.06019}{arXiv:1711.06019}) \item [[Stefan Schwede]], \emph{[[Global homotopy theory]]}, New Mathematical Monographs, 34 Cambridge University Press, 2018 (\href{https://arxiv.org/abs/1802.09382}{arXiv:1802.09382}) \end{itemize} related to results of \begin{itemize}% \item [[André Henriques]], [[David Gepner]], \emph{Homotopy Theory of Orbispaces} (\href{http://arxiv.org/abs/math/0701916}{arXiv:math/0701916}) \item [[Charles Rezk]], \emph{[[Global Homotopy Theory and Cohesion]]}, 2014 \end{itemize} Discussion of cohomology of [[inertia orbifolds]] is due to \begin{itemize}% \item Weimin Chen, [[Yongbin Ruan]], \emph{A New Cohomology Theory for Orbifold}, Commun. Math. Phys. 248 (2004) 1-31 (\href{http://arxiv.org/abs/math/0004129}{arXiv:math/0004129}) \end{itemize} See also \begin{itemize}% \item [[Dan Abramovich]], \emph{Lectures on Gromov-Witten invariants of orbifolds} (\href{http://arxiv.org/abs/math/0512372}{arXiv:math/0512372}) \end{itemize} [[!redirects orbifold cohomologies]] [[!redirects orbifold cohomology group]] [[!redirects orbifold cohomology groups]] [[!redirects orbispace cohomology]] [[!redirects orbispace cohomologies]] [[!redirects orbispace cohomology group]] [[!redirects orbispace cohomology groups]] \end{document}