\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{ordered pair} \hypertarget{ordered_pairs}{}\section*{{Ordered pairs}}\label{ordered_pairs} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{formalisations}{Formalisations}\dotfill \pageref*{formalisations} \linebreak \noindent\hyperlink{generalisations}{Generalisations}\dotfill \pageref*{generalisations} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Given any things $a$ and $b$, the \textbf{ordered pair} of $a$ and $b$ is a thing, usually written $(a,b)$, sometimes $[a,b]$ or $\langle{a,b}\rangle$. The important property is \begin{equation} (a,b) = (c,d) \;\Leftrightarrow\; a = c,\; b = d . \label{basic}\end{equation} The things $a$ and $b$ are called the \textbf{components} of the ordered pair $(a,b)$. Given any two sets $X$ and $Y$, their [[Cartesian product]] is a set $X \times Y$ whose [[elements]] are precisely the ordered pairs whose components are respectively elements of $X$ and elements of $Y$. Note that nothing is \textbf{ordered} in an ordered pair other than how it is written out, so sometimes just the word \textbf{pair} is used for this concept. In terms of [[category theory]] an ordered pair is an element in a [[Cartesian product]]. The concept of ``pair'' meaning a set containing just one or two members as in the [[axiom of pairing]] of [[ZFC|Zermelo–Frankel Set Theory]] is now usually distinguished as an \textbf{[[unordered pair]]}. A pair in which the components are ordered is basically an arrow between the components, which is sometimes called or analyzed as an [[interval object|interval]] within a larger context. \hypertarget{formalisations}{}\subsection*{{Formalisations}}\label{formalisations} One may wish to declare ordered pairs to exist by fiat, which was done, for example, by both [[Bourbaki]] and [[Bill Lawvere]]. In Bourbaki's foundational [[set theory]], $\langle{-,-}\rangle$ is a fundamental binary operation on mathematical objects satisfying two axioms: \eqref{basic} and the existence (as a set) of the Cartesian product of any two sets. In Lawvere's foundational set theory, [[ETCS]], one axiom is the existence of [[products]] in the category of sets; when applied to [[global elements]], this gives their ordered pair (with the product itself being the Cartesian product), and \eqref{basic} can be proved. Other [[structural set theories]] should contain an axiom similar to Lawvere's axiom of products. I need to check that I remembered Bourbaki correctly; it varies with the edition. ---Toby Instead, one may construct ordered pairs out of some more basic operation. In a [[material set theory]], one may use \emph{[[Kuratowski pairs]]} \begin{displaymath} (a,b) \coloneqq \big\{\,\{a\},\{a,b\}\,\big\} ; \end{displaymath} it is straightforward (using the [[axiom of extensionality]]) to prove that \eqref{basic} holds. Sometimes one sees the alternative \begin{displaymath} (a,b) \coloneqq \big\{a, \{a,b\}\,\big\} ; \end{displaymath} but now the [[axiom of foundation]] is also needed to prove \eqref{basic}, so the first form is usually preferred. To prove that the cartesian product of two sets is a set, one may use the axiom of separation ([[bounded separation]] is enough) to construct $X \times Y$ as a [[subset]] of the [[power set]] of the power set of the [[union]] of $X$ and $Y$, or else use the axiom of replacement ([[restricted replacement]] is enough) to construct it directly, since its elements are indexed by the sets $X$ and $Y$. \begin{remark} \label{class}\hypertarget{class}{} Again in the context of material set theory, there are other options for defining ordered pairs that may offer technical advantages. For example, assuming we have the natural numbers $\mathbb{N}$, and given a set $x$, let $\varphi(x)$ be the set $(x \setminus \mathbb{N}) \cup \{n+1: n \in x \cap \mathbb{N}\}$. Then define \begin{displaymath} (A, B) \coloneqq \{\varphi(a): a \in A\} \cup \{\varphi(b) \cup \{0\}: b \in B\} \end{displaymath} and observe that the first entry $A$ may be retrieved as the set of elements of $(A, B)$ that do not contain $0$, and $B$ as the set of elements that do. One advantage is that even for classes $A, B$ (defined in ZFC as formulas), we may define a class $(A, B)$ as another formula patterned on this construction. This solves a technical exercise posed by Andrej Bauer in this \href{https://mathoverflow.net/a/63268/2926}{MO post}; compare \href{https://ncatlab.org/nlab/show/function#for_classes}{class functions}. Thus, a function between classes $f: A \to B$ may be defined as an ordered triple $(A, f, B)$ where $f$ is a class of pairs $(a, b)$ defined by a formula that is [[entire relation|entire]] and [[functional relation|functional]]. \end{remark} In a foundational [[type theory]], ordered pairs are usually also given by fiat, but \eqref{basic} may not hold, depending on the type theory used. Now Bourbaki's binary operation of pairing becomes a typed operation; given $a$ of type $X$ and $b$ of type $Y$, the ordered pair $(x,y)$ has type $A \times B$. There are also two typed operations (either basic or definable, depending on the style of type theory used) $\pi\colon X \times Y \to X$ and $\rho\colon X \times Y \to Y$, satisfying the [[beta-rule]]s $\pi(x,y) = x$ and $\rho(x,y) = y$. Then we can either add the [[eta-rule]] $z = (\pi z,\rho z)$, which will allow \eqref{basic} to be proved; or else take \eqref{basic} as the \emph{definition} of equality on the product type $X \times Y$, which will then allow the eta-rule to be proved. (Or you can do neither, and then \eqref{basic} and the eta-rule will fail.) \hypertarget{generalisations}{}\subsection*{{Generalisations}}\label{generalisations} \begin{itemize}% \item [[tuples]] \item [[families]] \item [[pairings]] \item [[dependent sums]] \end{itemize} [[!redirects ordered pair]] [[!redirects ordered pairs]] \end{document}