\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{orientation in generalized cohomology} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{index_theory}{}\paragraph*{{Index theory}}\label{index_theory} [[!include index theory - contents]] \hypertarget{integration_theory}{}\paragraph*{{Integration theory}}\label{integration_theory} [[!include integration theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{TraditionalDefinition}{Concretely}\dotfill \pageref*{TraditionalDefinition} \linebreak \noindent\hyperlink{orientation_of_a_vector_bundle}{Orientation of a vector bundle}\dotfill \pageref*{orientation_of_a_vector_bundle} \linebreak \noindent\hyperlink{orientation_of_a_manifold}{Orientation of a manifold}\dotfill \pageref*{orientation_of_a_manifold} \linebreak \noindent\hyperlink{UniversalOrientationOfVectorBundles}{Universal orientation of vector bundles}\dotfill \pageref*{UniversalOrientationOfVectorBundles} \linebreak \noindent\hyperlink{abstractly}{Abstractly}\dotfill \pageref*{abstractly} \linebreak \noindent\hyperlink{principal_bundles}{$GL_1(R)$-principal $\infty$-bundles}\dotfill \pageref*{principal_bundles} \linebreak \noindent\hyperlink{associated_bundles}{$GL_1(R)$-associated $\infty$-bundles}\dotfill \pageref*{associated_bundles} \linebreak \noindent\hyperlink{orientations}{$R$-Orientations}\dotfill \pageref*{orientations} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_between_thom_classes_and_trivializations}{Relation between Thom classes and trivializations}\dotfill \pageref*{relation_between_thom_classes_and_trivializations} \linebreak \noindent\hyperlink{RelationToGenera}{Relation to genera}\dotfill \pageref*{RelationToGenera} \linebreak \noindent\hyperlink{relation_to_cubical_structures}{Relation to cubical structures}\dotfill \pageref*{relation_to_cubical_structures} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{orientations_related_to_genera_and_indices}{Orientations related to genera and indices}\dotfill \pageref*{orientations_related_to_genera_and_indices} \linebreak \noindent\hyperlink{complex_orientation}{Complex orientation}\dotfill \pageref*{complex_orientation} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Generally, for $E$ an [[E-∞ ring]] [[spectrum]], and $P \to X$ a [[sphere spectrum]]-bundle, an \emph{$E$-orientation} of $P$ is a trivialization of the [[associated bundle|associated]] $E$-bundle. Specifically, for $P = Th(V)$ the [[Thom space]] of a [[vector bundle]] $V \to X$, an $E$-orientation of $V$ is an $E$-orientation of $P$. More generally, for $A$ an $E$-algebra spectrum, an $E$-bundle is $A$-orientable if the associated $A$-bundle is trivializable. For more on this see [[(∞,1)-vector bundle]]. The existence of an $E$-orientation is necessary in order to have a notion of [[fiber integration]] in $E$-cohomology. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{TraditionalDefinition}{}\subsubsection*{{Concretely}}\label{TraditionalDefinition} \hypertarget{orientation_of_a_vector_bundle}{}\paragraph*{{Orientation of a vector bundle}}\label{orientation_of_a_vector_bundle} \begin{defn} \label{EOrientationOfAVectorBundle}\hypertarget{EOrientationOfAVectorBundle}{} Let $E$ be a [[multiplicative cohomology theory]] and let $V \to X$ be a topological [[vector bundle]] of [[rank]] $n$. Then an \textbf{$E$-orientation} or \textbf{$E$-[[Thom class]]} on $V$ is an element of degree $n$ \begin{displaymath} u \in \tilde E^n(Th(V)) \end{displaymath} in the [[reduced cohomology|reduced]] $E$-[[cohomology ring]] of the [[Thom space]] of $V$, such that for every point $x \in X$ its restriction $i_x^* u$ along \begin{displaymath} i_x \;\colon\; S^n \simeq Th(\mathbb{R}^n) \overset{Th(j_x)}{\longrightarrow} Th(V) \end{displaymath} (for $\mathbb{R}^n \overset{fib_x}{\hookrightarrow} V$ the [[fiber]] of $V$ over $x$) is a \emph{generator}, in that it is of the form \begin{displaymath} i^\ast u = \epsilon \cdot \gamma_n \end{displaymath} for \begin{itemize}% \item $\epsilon \in \tilde E^0(S^0)$ a [[unit]] in $E^\bullet$; \item $\gamma_n \in \tilde E^n(S^n)$ the image of the multiplicative unit under the [[suspension isomorphism]] $\tilde E^0(S^0) \stackrel{\simeq}{\to}\tilde E^n(S^n)$. \end{itemize} \end{defn} (e.g. \hyperlink{Kochmann96}{Kochmann 96, def. 4.3.4}) \hypertarget{orientation_of_a_manifold}{}\paragraph*{{Orientation of a manifold}}\label{orientation_of_a_manifold} \begin{defn} \label{EOrientationOfAManifold}\hypertarget{EOrientationOfAManifold}{} Let $E$ be a [[multiplicative cohomology theory]] and let $X$ be a [[manifold]], possibly [[manifold with boundary|with boundary]], of [[dimension]] $n$. An \textbf{$E$-orientation} of $X$ is a class in the $E$-[[generalized homology]] \begin{displaymath} \iota \in E_n(X,\partial X) \end{displaymath} with the property that for each point $x \in Int(X)$ in the [[interior]], it maps to a generator of $E_\bullet(\ast)$ under the map \begin{displaymath} E_\bullet(X,\partial X) \longrightarrow E_\bullet(X,\; X - \{x\}) \simeq E_\bullet(D^n, S^{n-1}) \simeq E_{\bullet-n}(\ast) \,, \end{displaymath} where the isomorphism is the excision isomorphism (\href{generalized+homology#excision}{def.}) for the complement of a closed [[n-ball]] around $x$. \end{defn} (e.g. \hyperlink{Kochmann96}{Kochmann 96, p. 134}) \begin{prop} \label{}\hypertarget{}{} $E$-orientations of manifolds (def. \ref{EOrientationOfAManifold}) are equivalent to $E$-orientations of their stable [[normal bundle]] (def. \ref{EOrientationOfAVectorBundle}). \end{prop} (e.g. \hyperlink{Rudyak98}{Rudyak 98, chapter V, theorem 2.4}) (also \hyperlink{Kochmann96}{Kochmann 96, prop. 4.3.5}, but maybe that proof needs an extra argument) \hypertarget{UniversalOrientationOfVectorBundles}{}\paragraph*{{Universal orientation of vector bundles}}\label{UniversalOrientationOfVectorBundles} \begin{remark} \label{}\hypertarget{}{} Recall that a \emph{[[(B,f)-structure]]} $\mathcal{B}$ is a system of [[Serre fibrations]] $B_n \overset{f_n}{\longrightarrow} B O(n)$ over the [[classifying spaces]] for [[orthogonal structure]] equipped with maps \begin{displaymath} j_n \;\colon\; B_n \longrightarrow B_{n+1} \end{displaymath} covering the canonical inclusions of classifying spaces. For instance for $G_n \to O(n)$ a compatible system of [[topological group]] [[homomorphisms]], then the $(B,f)$-structure given by the [[classifying spaces]] $B G_n$ (possibly suitably resolved for the maps $B G_n \to B O(n)$ to become Serre fibrations) defines \emph{[[G-structure]]}. Given a $(B,f)$-structure, then there are the [[pullbacks]] $V^{\mathcal{B}}_n \coloneqq f_n^\ast (E O(n)\underset{O(n)}{\times}\mathbb{R}^n)$ of the [[universal vector bundles]] over $B O(n)$, which are the \emph{universal vector bundles equipped with $(B,f)$-structure} \begin{displaymath} \itexarray{ V^{\mathcal{B}}_n &\longrightarrow& E O(n)\underset{O(n)}{\times} \mathbb{R}^n \\ \downarrow &(pb)& \downarrow \\ B_n & \underset{f_n}{\longrightarrow} & B O(n) } \,. \end{displaymath} Finally recall that there are canonical morphisms (\href{Thom+spectrum#PullbackOfUniversalOnBundleUnderCoordinateRestriction}{prop.}) \begin{displaymath} \phi_n \;\colon\; \mathbb{R} \oplus V^{\mathcal{B}}_n \longrightarrow V^{\mathcal{B}}_{n+1} \end{displaymath} \end{remark} \begin{defn} \label{EOrientationOfABfStructure}\hypertarget{EOrientationOfABfStructure}{} Let $E$ be a [[multiplicative cohomology theory]] and let $\mathcal{B}$ be a multiplicative [[(B,f)-structure]]. Then a \textbf{universal $E$-orientation for vector bundles with $\mathcal{B}$-structure} is an $E$-orientation, according to def. \ref{EOrientationOfAVectorBundle}, for each rank-$n$ universal vector bundle with $\mathcal{B}$-structure: \begin{displaymath} \xi_n \in \tilde E^n(Th(V_n^{\mathcal{B}})) \;\;\;\; \forall n \in \mathbb{N} \end{displaymath} such that these are compatible in that \begin{enumerate}% \item for all $n \in \mathbb{N}$ then \begin{displaymath} \xi_n = \phi_n^\ast \xi_{n+1} \,, \end{displaymath} where \begin{displaymath} \xi_n \in \tilde E^n(Th(V_n)) \simeq \tilde E^{n+1}(\Sigma Th(V_n)) \simeq \tilde E^{n+1}(Th(\mathbb{R}\oplus V_n)) \end{displaymath} (with the first isomorphism is the [[suspension isomorphism]] of $E$ and the second exhibiting the [[homeomorphism]] of Thom spaces $Th(\mathbb{R} \oplus V)\simeq \Sigma Th(V)$ (\href{Thom+space#SuspensionOfThomSpaces}{prop.})) and where \begin{displaymath} \phi_n^\ast \;\colon\; \tilde E^{n+1}(Th(V_{n+1})) \longrightarrow \tilde E^{n+1}(Th(\mathbb{R}\oplus V_n)) \end{displaymath} is pullback along the canonical $\phi_n \colon \mathbb{R}\oplus V_n \to V_{n+1}$ (\href{Thom+spectrum#PullbackOfUniversalOnBundleUnderCoordinateRestriction}{prop.}). \item for all $n_1, n_2 \in \mathbb{N}$ then \begin{displaymath} \xi_{n+1} \cdot \xi_{n+2} = \xi_{n_1 + n_2} \,. \end{displaymath} \end{enumerate} \end{defn} \begin{prop} \label{UniversalEOrientationsAreEquivalentlyMorphismsOfRingSpectra}\hypertarget{UniversalEOrientationsAreEquivalentlyMorphismsOfRingSpectra}{} A universal $E$-orientation, in the sense of def. \ref{EOrientationOfABfStructure}, for vector bundles with [[(B,f)-structure]] $\mathcal{B}$, is equivalently (the homotopy class of) a homomorphism of [[ring spectra]] \begin{displaymath} \xi \;\colon\; M\mathcal{B} \longrightarrow E \end{displaymath} from the universal $\mathcal{B}$-[[Thom spectrum]] to a spectrum which via the [[Brown representability theorem]] represents the given [[generalized (Eilenberg-Steenrod) cohomology theory]] $E$ (and which we denote by the same symbol). \end{prop} \begin{proof} The [[Thom spectrum]] $M\mathcal{B}$ has a standard structure of a [[CW-spectrum]]. Let now $E$ denote a [[sequential spectrum|sequential]] [[Omega-spectrum]] representing the multiplicative cohomology theory of the same name. Since, in the standard [[model structure on topological sequential spectra]], [[CW-spectra]] are cofibrant (\href{Introduction+to+Stable+homotopy+theory+--+1#CellSpectraAreCofibrantInModelStructureOnTopologicalSequentialSpectra}{prop.}) and Omega-spectra are fibrant (\href{Introduction+to+Stable+homotopy+theory+--+1#StableModelStructureOnSequentialSpectraIsModelCategory}{thm.}) we may represent all morphisms in the [[stable homotopy category]] (\href{Introduction+to+Stable+homotopy+theory+--+1#TheStableHomotopyCategory}{def.}) by actual morphisms \begin{displaymath} \xi \;\colon\; M \mathcal{B} \longrightarrow E \end{displaymath} of sequential spectra (due to \href{Introduction+to+Stable+homotopy+theory+--+P#HomsOutOfCofibrantIntoFibrantComputeHomotopyCategory}{this lemma}). Now by definition (\href{Introduction+to+Stable+homotopy+theory+--+1#SequentialSpectra}{def.}) such a homomorphism is precissely a sequence of base-point preserving [[continuous functions]] \begin{displaymath} \xi_n \;\colon\; (M\mathcal{B})_n = Th(V_n^{\mathcal{B}}) \longrightarrow E_n \end{displaymath} for $n \in \mathbb{N}$, such that they are compatible with the structure maps $\sigma_n$ and equivalently with their $(S^1 \wedge(-)\dashv Maps(S^1,-)_\ast)$-[[adjuncts]] $\tilde \sigma_n$, in that these diagrams commute: \begin{displaymath} \itexarray{ S^1 \wedge Th(V^{\mathcal{B}}_n) &\overset{S^1 \wedge \xi_n}{\longrightarrow}& S^1 \wedge E_n \\ {}^{\mathllap{\sigma^{M\mathcal{B}}_n}}\downarrow && \downarrow^{\mathrlap{\sigma^E_n}} \\ Th(V^{\mathcal{B}}_{n+1}) &\underset{\xi_{n+1}}{\longrightarrow}& E_{n+1} } \;\;\;\;\;\;\;\;\; \leftrightarrow \;\;\;\;\;\;\;\;\; \itexarray{ Th(V^{\mathcal{B}}_n) &\overset{\xi_n}{\longrightarrow}& E_n \\ {}^{\mathllap{\tilde \sigma^{M\mathcal{B}}_n}}\downarrow && \downarrow^{\mathrlap{\tilde \sigma^E_n}} \\ Maps(S^1,Th(V^{\mathcal{B}}_{n+1})) &\underset{Maps(S^1,\xi_{n+1})_\ast}{\longrightarrow}& Maps(S^1, E_{n+1})_{\ast} } \end{displaymath} for all $n \in \mathbb{N}$. First of all this means (via the identification given by the [[Brown representability theorem]], see \href{Introduction+to+Stable+homotopy+theory+--+S#AdditiveReducedCohomologyTheoryRepresentedByOmegaSpectrum}{this prop.}) that the components $\xi_n$ are equivalently representatives of elements in the [[cohomology groups]] \begin{displaymath} \xi_n \in \tilde E^n(Th(V^{\mathcal{B}}_n)) \end{displaymath} (which we denote by the same symbol, for brevity). Now by the definition of universal [[Thom spectra]] (\href{Introduction+to+Stable+homotopy+theory+--+S#UniversalThomSpectrum}{def.}, \href{Introduction+to+Stable+homotopy+theory+--+S#UniversalThomSpectrumForBfStructure}{def.}), the structure map $\sigma_n^{M\mathcal{B}}$ is just the map $\phi_n \colon \mathbb{R}\oplus Th(V^{\mathcal{B}}_n)\to Th(V_{n+1}^{\mathcal{B}})$ from above. Moreover, by the [[Brown representability theorem]], the [[adjunct]] $\tilde \sigma_n^E \circ \xi_n$ (on the right) of $\sigma^E_n \circ S^1 \wedge \xi_n$ (on the left) is what represents (again by \href{Introduction+to+Stable+homotopy+theory+--+S#AdditiveReducedCohomologyTheoryRepresentedByOmegaSpectrum}{this prop.}) the image of \begin{displaymath} \xi_n \in E^n(Th(V^{\mathcal{B}}_n)) \end{displaymath} under the [[suspension isomorphism]]. Hence the [[commutative square|commutativity]] of the above squares is equivalently the first compatibility condition from def. \ref{EOrientationOfABfStructure}: $\xi_n \simeq \phi_n^\ast \xi_{n+1}$ in $\tilde E^{n+1}(Th(\mathbb{R}\oplus V_n^{\mathcal{B}}))$ Next, $\xi$ being a homomorphism of [[ring spectra]] means equivalently (we should be modelling $M\mathcal{B}$ and $E$ as [[structured spectra]] (\href{Introduction+to+Stable+homotopy+theory+--+1#DiagramSpectra}{here.}) to be more precise on this point, but the conclusion is the same) that for all $n_1, n_2\in \mathbb{N}$ then \begin{displaymath} \itexarray{ Th(V_{n_1}^{\mathcal{B}}) \wedge Th(V_{n_2}^{\mathcal{B}}) &\overset{}{\longrightarrow}& Th(V_{n_1 + n_2}) \\ {}^{\mathllap{\xi_{n_1} \wedge \xi_{n_2}}}\downarrow && \downarrow^{\mathrlap{\xi_{n_1 + n_2}}} \\ E_{n_1} \wedge E_{n_2} &\underset{\cdot}{\longrightarrow}& E_{n_1 + n_2} } \,. \end{displaymath} This is equivalently the condition $\xi_{n_1} \cdot \xi_{n_2} \simeq \xi_{n_1 + n_2}$. Finally, since $M\mathcal{B}$ is a [[ring spectrum]], there is an essentially unique multiplicative homomorphism from the [[sphere spectrum]] \begin{displaymath} \mathbb{S} \overset{e}{\longrightarrow} M\mathcal{B} \,. \end{displaymath} This is given by the component maps \begin{displaymath} e_n \;\colon\; S^n \simeq Th(\mathbb{R}^n) \longrightarrow Th(V_{n}^{\mathcal{B}}) \end{displaymath} that are induced by including the fiber of $V_{n}^{\mathcal{B}}$. Accordingly the composite \begin{displaymath} \mathbb{S} \overset{e}{\longrightarrow} M\mathcal{B} \overset{\xi}{\longrightarrow} E \end{displaymath} has as components the restrictions $i^\ast \xi_n$ appearing in def. \ref{EOrientationOfAVectorBundle}. At the same time, also $E$ is a ring spectrum, hence it also has an essentially unique multiplicative morphism $\mathbb{S} \to E$, which hence must agree with $i^\ast \xi$, up to homotopy. If we represent $E$ as a [[symmetric ring spectrum]], then the canonical such has the required property: $e_0$ is the identity element in degree 0 (being a unit of an ordinary ring, by definition) and hence $e_n$ is necessarily its image under the suspension isomorphism, due to compatibility with the structure maps and using the above analysis. \end{proof} \hypertarget{abstractly}{}\subsubsection*{{Abstractly}}\label{abstractly} Let $E$ be a [[E-∞ ring]] [[spectrum]]. Write $\mathbb{S}$ for the [[sphere spectrum]]. For the following see also May,Sigurdsson: \emph{[[Parametrized Homotopy Theory]]} (\href{http://mathoverflow.net/a/107837/381}{MO comment}) \hypertarget{principal_bundles}{}\paragraph*{{$GL_1(R)$-principal $\infty$-bundles}}\label{principal_bundles} Write $R^\times$ or $GL_1(R)$ for the [[general linear group]] of the $E_\infty$-ring $R$: it is the subspace of the degree-0 space $\Omega^\infty R$ on those points that map to multiplicatively invertible elements in the ordinary ring $\pi_0(R)$. Since $R$ is $E_\infty$, the space $GL_1(R)$ is itself an [[infinite loop space]]. Its one-fold [[delooping]] $B GL_1(R)$ is the [[classifying space]] for $GL_1(R)$-[[principal ∞-bundle]]s (in [[Top]]): for $X \in Top$ and $\zeta : X \to B GL_1(R)$ a map, its [[homotopy fiber]] \begin{displaymath} \itexarray{ GL_1(R) &\to& P &\to& * \\ \downarrow && \downarrow && \downarrow \\ * &\stackrel{x}{\to}& X &\stackrel{\zeta}{\to}& B GL_1(R) } \end{displaymath} is the $GL_1(R)$-principal $\infty$-bundle $P \to X$ classified by that map. \begin{example} \label{}\hypertarget{}{} For $R = \mathbb{S}$ the [[sphere spectrum]], we have that $B GL_1(\mathbb{S})$ is the [[classifying space]] for spherical fibrations. \end{example} \begin{example} \label{}\hypertarget{}{} There is a canonical morphism \begin{displaymath} B O \to B GL_1(\mathbb{S}) \end{displaymath} from the classifying space of the [[orthogonal group]] to that of the [[infinity-group of units]] of the [[sphere spectrum]], called the \emph{[[J-homomorphism]]}. Postcomposition with this sends real [[vector bundle]]s $V \to X$ to sphere bundles. This is what is modeled by the [[Thom space]] construction \begin{displaymath} J : V \mapsto S^V \end{displaymath} which sends each fiber to its [[one-point compactification]]. \end{example} \hypertarget{associated_bundles}{}\paragraph*{{$GL_1(R)$-associated $\infty$-bundles}}\label{associated_bundles} For $P \to X$ a $GL_1(R)$-[[principal ∞-bundle]] there is canonically the corresponding [[associated ∞-bundle]] with fiber $R$. Precisely, in the [[stable (∞,1)-category]] $Stab(Top)$ of [[spectra]], regarded as the [[stabilization]] of the [[(∞,1)-topos]] [[Top]] \begin{displaymath} Stab(Top) \simeq Spectra \stackrel{\overset{\Sigma^\infty}{\leftarrow}}{\underset{\Omega^\infty}{\to}} Top \end{displaymath} the associated bundle is the [[smash product]] over $\Sigma^\infty GL_1(R)$ \begin{displaymath} X^\zeta := \Sigma^\infty P \wedge_{\Sigma^\infty GL_1(R)} R \,. \end{displaymath} This is the generalized \textbf{[[Thom spectrum]]}. For $R = K O$ the real [[K-theory spectrum]] this is given by the ordinary [[Thom space]] construction on a [[vector bundle]] $V \to X$. An $E$-orientation of a vector bundle $V \to X$ is a trivialization of the $E$-module bundle $E \wedge S^V$, where we fiberwise form the [[smash product]] of $E$ with the [[Thom space]] of $V$. \begin{prop} \label{}\hypertarget{}{} For $f : R \to S$ a morphism of $E_\infty$-rings, and $\zeta : X \to B GL_1(R)$ the classifying map for an $R$-bundle, the corresponding associated $S$-bundle classified by the composite \begin{displaymath} X \stackrel{\zeta}{ \to } B GL_1(R) \stackrel{f}{\to} B GL_1(S) \end{displaymath} is given by the [[smash product]] \begin{displaymath} X^{f \circ \zeta} \simeq X^\zeta \wedge_R S \,. \end{displaymath} \end{prop} This appears as (\hyperlink{Hopkins}{Hopkins, bottom of p. 6}). \hypertarget{orientations}{}\paragraph*{{$R$-Orientations}}\label{orientations} For $X \stackrel{\zeta}{\to} B GL_1(\mathbb{S})$ a sphere bundle, an \textbf{$R$-orientation} on $X^\zeta$ is a trivialization of the associated $R$-bundle $X^\zeta \wedge R$, hence a trivialization (null-homotopy) of the classifying morphism \begin{displaymath} X \stackrel{\zeta}{\to} B GL_1(\mathbb{S}) \stackrel{\iota}{\to} B GL_1(R) \,, \end{displaymath} where the second map comes from the unit of $E_\infty$-rings $\mathbb{S} \to R$ (the [[sphere spectrum]] is the [[initial object]] in $E_\infty$-rings). Specifically, for $V : X \to B O$ a [[vector bundle]], an $E$-orientation on it is a trivialization of the $R$-bundle associated to the associated [[Thom space]] sphere bundle, hence a trivialization of the morphism \begin{displaymath} \itexarray{ B O &\stackrel{J}{\to}& B GL_1(\mathbb{S}) &\stackrel{\iota}{\to}& B GL_1(R) \\ {}^{\mathllap{V}}\uparrow & \nearrow_{\mathrlap{\zeta}} \\ X } \,. \end{displaymath} This appears as (\hyperlink{Hopkins}{Hopkins, p.7}). A natural $R$-orientation of \emph{all} vector bundles is therefore a trivialization of the morphism \begin{displaymath} B O \stackrel{J}{\to} B GL_1(\mathbb{S}) \stackrel{\iota}{\to} B GL_1(R) \,. \end{displaymath} Similarly, an $R$-orientation of \emph{all} [[spinor bundle]]s is a trivialization of \begin{displaymath} B Spin \to B O \stackrel{J}{\to} B GL_1(\mathbb{S}) \stackrel{\iota}{\to} B GL_1(R) \end{displaymath} and an $R$-orientation of all [[string group]]-bundles a trivialization of \begin{displaymath} B String \to B Spin \to B O \stackrel{J}{\to} B GL_1(\mathbb{S}) \stackrel{\iota}{\to} B GL_1(R) \end{displaymath} and so forth, through the [[Whitehead tower]] of $B O$. Now, the [[Thom spectrum]] [[MO]] is the [[spherical fibration]] over $B O$ [[associated infinity-bundle|associated]] to the $O$-[[universal principal bundle]]. In generalization of the way that a trivialization of an ordinary $G$-principal bundle $P$ is given by a $G$-equivariant map $P \to G$, one finds that trivializations of the morphism \begin{displaymath} B O \stackrel{J}{\to} B GL_1(\mathbb{S}) \stackrel{\iota}{\to} B GL_1(R) \end{displaymath} correspond to $E_\infty$-maps \begin{displaymath} M O \to R \end{displaymath} from the [[Thom spectrum]] to $R$. Similarly trivialization of \begin{displaymath} B Spin \to B O \stackrel{J}{\to} B GL_1(\mathbb{S}) \stackrel{\iota}{\to} B GL_1(R) \end{displaymath} corresponds to morphisms \begin{displaymath} M Spin \to R \end{displaymath} and trivializations of \begin{displaymath} B String \to B Spin \to B O \stackrel{J}{\to} B GL_1(\mathbb{S}) \stackrel{\iota}{\to} B GL_1(R) \end{displaymath} to morphisms \begin{displaymath} M String \to R \end{displaymath} and so forth. This is the way orientations in generalized cohomology often appear in the literature. \begin{example} \label{}\hypertarget{}{} The construction of the [[string orientation of tmf]], hence a morphism \begin{displaymath} M String \to tmf \end{displaymath} is discussed in (\hyperlink{Hopkins}{Hopkins, last pages}). \end{example} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_between_thom_classes_and_trivializations}{}\subsubsection*{{Relation between Thom classes and trivializations}}\label{relation_between_thom_classes_and_trivializations} The relation (equivalence) between choices of [[Thom classes]] and trivializations of [[(∞,1)-line bundles]] is discussed e.g. in \hyperlink{AndoHopkinsRezk10}{Ando-Hopkins-Rezk 10, section 3.3} \hypertarget{RelationToGenera}{}\subsubsection*{{Relation to genera}}\label{RelationToGenera} Let $G$ be a [[topological group]] equipped with a [[homomorphism]] to the [[stable orthogonal group]], and write $B G \to B O$ for the corresponding map of [[classifying spaces]]. Write $J \colon B O \longrightarrow B GL_1(\mathbb{S})$ for the [[J-homomorphism]]. For $E$ an [[E-∞ ring]], there is a canonical homomorphism $B GL_1(\mathbb{S}) \to B GL_1(E)$ between the [[deloopings]] of the [[∞-groups of units]]. A trivialization of the total composite \begin{displaymath} B G \to B O \stackrel{J}{\to} B GL_1(\mathbb{S}) \to B GL_1(E) \end{displaymath} is a universal $E$-orientation of [[G-structures]]. Under [[(∞,1)-colimit]] in $E Mod$ this induces a homomorphism of $E$-[[∞-modules]] \begin{displaymath} \sigma \;\colon\; M G \to E \end{displaymath} from the universal $G$-[[Thom spectrum]] to $E$. If here $G \to GL_1(\mathbb{S})$ is the $\Omega^\infty$-component of a map of [[spectra]] then this $\sigma$ is a homomorphism of [[E-∞ rings]] and in this case there is a [[bijection]] between universal orientations and such $E_\infty$-ring homomorphisms (\hyperlink{AndoHopkinsRezk10}{Ando-Hopkins-Rezk 10, prop. 2.11}). The latter, on passing to [[homotopy groups]], are [[genera]] on manifolds with [[G-structure]]. \hypertarget{relation_to_cubical_structures}{}\subsubsection*{{Relation to cubical structures}}\label{relation_to_cubical_structures} For $E$ a [[multiplicative cohomology theory|multiplicative]] [[weakly periodic cohomology theory|weakly periodic]] [[complex orientable cohomology theory]] then $Spec E^0(B U\langle 6\rangle)$ is naturally equivalent to the space of [[cubical structure on a line bundle|cubical structures]] on the trivial line bundle over the [[formal group]] of $E$. In particular, [[homotopy classes]] of maps of [[E-infinity ring]] spectra $MU\angle 6\rangle \to E$ from the [[Thom spectrum]] to $E$, and hence universal $MU\langle 6\rangle$-[[orientation in generalized cohomology|orientations]] (see there) of $E$ are in natural bijection with these cubical structures. See at \emph{[[cubical structure]]} for more details and references. This way for instance the [[string orientation of tmf]] has been constructed. See there for more. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{orientations_related_to_genera_and_indices}{}\subsubsection*{{Orientations related to genera and indices}}\label{orientations_related_to_genera_and_indices} [[!include genera and partition functions - table]] \hypertarget{complex_orientation}{}\subsubsection*{{Complex orientation}}\label{complex_orientation} An $E_\infty$ [[complex oriented cohomology theory]] $E$ is indeed equipped with a universal complex orientation given by an $E_\infty$-ring homomorphism $MU \to E$, see \href{complex+oriented+cohomology+theory#InTermsOfGenera}{here}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[differential Thom class]] \item [[differential orientation]], [[fiber integration in differential cohomology]] \item [[(infinity,1)-vector bundle]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Discussion in terms of [[Thom classes]]: \begin{itemize}% \item [[Frank Adams]], part III, section 10 of \emph{[[Stable homotopy and generalised homology]]}, 1974 \item [[Stanley Kochmann]], section 4.3 of \emph{[[Bordism, Stable Homotopy and Adams Spectral Sequences]]}, AMS 1996 \item [[Yuli Rudyak]], \emph{In Thom spectra, Orientability and Cobordism}, Springer 1998 (\href{http://www.maths.ed.ac.uk/~aar/papers/rudyakthom.pdf}{pdf}) \item [[Jacob Lurie]], lecture 5 of \emph{[[Chromatic Homotopy Theory]]}, 2010 (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture5.pdf}{pdf}) \item [[eom]], \emph{\href{http://eom.springer.de/o/o070200.htm}{Orientation}} \item [[Manifold Atlas]], \emph{\href{http://www.map.mpim-bonn.mpg.de/Orientation_of_manifolds_in_generalized_cohomology_theories}{Orientation of manifolds in generalized cohomology theories}} \end{itemize} A comprehensive account of the general abstract persepctive (with predecessors in \hyperlink{AndoHopkinsRezk10}{Ando-Hopkins-Rezk 10}) is in \begin{itemize}% \item [[Matthew Ando]], [[Andrew Blumberg]], [[David Gepner]], [[Michael Hopkins]], [[Charles Rezk]], \emph{Units of ring spectra and Thom spectra} (\href{http://arxiv.org/abs/0810.4535}{arXiv:0810.4535}) \item [[Matthew Ando]], [[Andrew Blumberg]], [[David Gepner]], section 6 of \emph{Twists of K-theory and TMF}, in Robert S. Doran, Greg Friedman, [[Jonathan Rosenberg]], \emph{Superstrings, Geometry, Topology, and $C^*$-algebras}, Proceedings of Symposia in Pure Mathematics \href{http://www.ams.org/bookstore-getitem/item=PSPUM-81}{vol 81}, American Mathematical Society (\href{http://arxiv.org/abs/1002.3004}{arXiv:1002.3004}) \end{itemize} Lecture notes on this include \begin{itemize}% \item [[Mike Hopkins]] (notes by [[André Henriques]]), \emph{The String orientation of tmf} (\href{http://arxiv.org/abs/0805.0743}{arXiv:0805.0743}) \end{itemize} which are motivated towards constructing the [[string orientation of tmf]], based on \begin{itemize}% \item [[Matthew Ando]], [[Mike Hopkins]], [[Charles Rezk]], \emph{Multiplicative orientations of KO-theory and the spectrum of topological modular forms}, 2010 (\href{http://www.math.uiuc.edu/~mando/papers/koandtmf.pdf}{pdf}) \end{itemize} [[!redirects Thom class]] [[!redirects Thom classes]] [[!redirects orientations in generalized cohomology]] [[!redirects E-orientation]] [[!redirects E-orientations]] \end{document}