\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{orthogonal factorization system} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{factorization_systems}{}\paragraph*{{Factorization systems}}\label{factorization_systems} [[!include factorization systems - contents]] \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{orthogonal_factorization_systems}{Orthogonal factorization systems}\dotfill \pageref*{orthogonal_factorization_systems} \linebreak \noindent\hyperlink{prefactorization_systems}{Prefactorization systems}\dotfill \pageref*{prefactorization_systems} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{closure_properties}{Closure properties}\dotfill \pageref*{closure_properties} \linebreak \noindent\hyperlink{CancellationProperties}{Cancellation properties}\dotfill \pageref*{CancellationProperties} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{generalizations}{Generalizations}\dotfill \pageref*{generalizations} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} \hypertarget{orthogonal_factorization_systems}{}\subsubsection*{{Orthogonal factorization systems}}\label{orthogonal_factorization_systems} \begin{defn} \label{}\hypertarget{}{} Let $C$ be a [[category]] and let $(E,M)$ be two [[classes]] of [[morphisms]] in $C$. We say that $(E,M)$ is an \textbf{orthogonal factorization system} if $(E,M)$ is a [[weak factorization system]] in which solutions to [[lifting problems]] are unique. \end{defn} We spell out several equivalent explicit formulation of what this means. \begin{defn} \label{EquivalentDefinitions}\hypertarget{EquivalentDefinitions}{} $(E,M)$ is an \textbf{orthogonal factorization system} if every morphism $f$ in $C$ factors $f = r\circ \ell$ as a morphism $\ell \in E$ followed by a morphism $r \in M$; and the following equivalent conditions hold \begin{enumerate}% \item We have: a. $E$ is precisely the class of morphisms that are left [[orthogonality|orthogonal]] to every morphism in $M$; b. $M$ is precisely the class of morphisms that are right [[orthogonality|orthogonal]] to every morphism in $E$. \item We have: a. The factorization is unique up to unique [[isomorphism]]. b. $E$ and $M$ both contain all [[isomorphisms]] and are closed under composition. \item We have: a. $E$ and $M$ are [[replete subcategories]] of the [[arrow category]] $C^I$. b. Every morphism in $E$ is left [[orthogonality|orthogonal]] to every morphism in $M$. \end{enumerate} \end{defn} OFS's are traditionally called just \textbf{factorization systems}. See the \emph{[[joyalscatlab:Factorization systems|Catlab]]} for more of the theory. An orthogonal factorization system is called \textbf{proper} if every morphism in $E$ is an [[epimorphism]] and every morphism in $M$ is a [[monomorphism]]. \hypertarget{prefactorization_systems}{}\subsubsection*{{Prefactorization systems}}\label{prefactorization_systems} For any class $E$ of morphisms in $C$, we write $E^\perp$ for the class of all morphisms that are right orthogonal to every morphism in $E$. Dually, given $M$ we write ${}^\perp M$ for the class of all morphisms that are left orthogonal to every morphism in $M$. The second condition in the definition of an OFS then says that $E= {}^\perp M$ and $M= E^\perp$. In general, $(-)^\perp$ and ${}^\perp(-)$ form a [[Galois connection]] on the [[poset]] of classes of morphisms in $C$. A pair $(E,M)$ such that $E= {}^\perp M$ and $M= E^\perp$ is sometimes called a \textbf{prefactorization system}. Note that by generalities about Galois connections, for any class $A$ of maps we have prefactorization systems $({}^\perp(A^\perp),A^\perp)$ and $({}^\perp A, ({}^\perp A)^\perp)$. We call these \emph{generated} and \emph{cogenerated} by $A$, respectively. \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{prop} \label{}\hypertarget{}{} The different characterization in def. \ref{EquivalentDefinitions} are indeed all equivalent. \end{prop} \begin{proof} (\ldots{}) For the moment see (\hyperlink{Joyal}{Joyal}). (\ldots{}) \end{proof} \begin{prop} \label{}\hypertarget{}{} A [[weak factorization system]] $(L,R)$ is an orthogonal factorization system precisely if $L \perp R$. \end{prop} \begin{proof} (\ldots{}) For the moment see (\hyperlink{Joyal}{Joyal}). (\ldots{}) \end{proof} \begin{prop} \label{IsomorphismsAreIntersection}\hypertarget{IsomorphismsAreIntersection}{} For $(L,R)$ an orthogonal factorization system in a category $C$, the intersection $L \cap R$ is precisely the class of [[isomorphisms]] in $C$. \end{prop} \begin{proof} If is clear that every isomorphism is in $L \cap R$. Conversely, let $f : A \to B$ be a morphism in $L \cap R$. This implies that the two trivial factorizations \begin{displaymath} f = A \stackrel{id_A}{\to} A \stackrel{f}{\to} B \end{displaymath} and \begin{displaymath} f = A \stackrel{f}{\to} B \stackrel{id_B}{\to} B \end{displaymath} are both $(L,R)$-factorization. Therefore there is a unique morphism $\tilde f$ in the [[commuting diagram]] \begin{displaymath} \itexarray{ A &\stackrel{id_A}{\to}& A \\ \downarrow^{\mathrlap{f}} &\nearrow_{\bar f}& \downarrow^{\mathrlap{f}} \\ B &\stackrel{id_B}{\to}& B } \,. \end{displaymath} This says precisely that $\bar f$ is a left and right [[inverse]] of $f$. \end{proof} \hypertarget{closure_properties}{}\subsubsection*{{Closure properties}}\label{closure_properties} A prefactorization system $(E,M)$ (and hence, also, a factorization system) satisfies the following closure properties. We state them for $M$, but $E$ of course satisfies the dual property. \begin{itemize}% \item $M$ contains the isomorphisms and is closed under composition and [[pullback]] (insofar as pullbacks exist in $C$). \item If a composite $f g$ is in $M$, and $f$ is either in $M$ or a [[monomorphism]], then $g$ is in $M$. \item $M$ is closed under all [[limits]] in the [[arrow category]] $Arr(C)$. \end{itemize} If $C$ is a [[locally presentable category]], then for any \emph{small set} of maps $A$, the prefactorization system $({}^\perp(A^\perp),A^\perp)$ is actually a factorization system. The argument is by a transfinite construction similar to the [[small object argument]]. On the other hand, if $(E,M)$ is any prefactorization system for which $M$ consists of monomorphisms and $C$ is [[complete category|complete]] and [[well-powered category|well-powered]], then $(E,M)$ is actually a factorization system. (Of course, there is a dual statement as well.) In fact something slightly more general is true; see [[M-complete category]] for this and other related ways to construct factorization systems. \hypertarget{CancellationProperties}{}\subsubsection*{{Cancellation properties}}\label{CancellationProperties} \begin{prop} \label{}\hypertarget{}{} For $(L,R)$ an orthogonal factorization system. Let \begin{displaymath} \itexarray{ && Y \\ & {}^{\mathllap{f}}\nearrow && \searrow^{\mathrlap{g}} \\ X && \stackrel{g \circ f}{\to} && Z } \end{displaymath} be two composable morphisms. Then \begin{itemize}% \item If $f$ and $g \circ f$ are in $L$, then so is $g$. \item If $g$ and $g\circ f$ are in $R$, then so is $f$. \end{itemize} \end{prop} \begin{proof} Consider the first case. The second is directly analogous. Choose an $(L,R)$-factorization of $g$ \begin{displaymath} g : Y \stackrel{\ell}{\to} I \stackrel{r}{\to} Z \,. \end{displaymath} With this we have lifting diagrams of the form \begin{displaymath} \itexarray{ X &\stackrel{g \circ f}{\to}& Z \\ \downarrow^{\mathrlap{f}} && \downarrow^{id_Z} \\ Y & \nearrow_r& \\ \downarrow^{\mathrlap{\ell}} && \downarrow^{id_Z} \\ I &\stackrel{r}{\to}& Z } \;\;\;\;\;\;\; \;\;\;\;\;\;\; \itexarray{ X &\stackrel{f}{\to}& Y &\stackrel{\ell}{\to}& I \\ {}^{\mathllap{g \circ f}}\downarrow & & \nearrow_{r^{-1}}& & \downarrow^{\mathrlap{r}} \\ Z &\underset{id_Z}{\to}& &\underset{id_Z}{\to}& Z } \end{displaymath} exhibiting an inverse of $r$. Therefore $r$ is an isomorphism, hence is in $L$, by prop. \ref{IsomorphismsAreIntersection}, hence so is the composite $f = r \circ \ell$. \end{proof} \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} Several classical examples of OFS $(E,M)$: \begin{itemize}% \item in any [[topos]] or [[pretopos]], $E$ = class of all epis, $M$ = class of all monos: the [[(epi, mono) factorization system]]; \item more generally, in any [[regular category]], $E$ = class of all [[regular epimorphisms]], $M$ = class of all monos \item in any [[quasitopos]], $E$ = all epimorphisms, $M$ = all [[strong monomorphisms]] \item In [[Cat]], $E$ = [[bo functors]], $M$ = [[fully faithful functors]]: the [[bo-ff factorization system]] \item (Street) in [[Cat]], $E$ = 0-[[final functors]], $M$ = [[discrete fibrations]] \item (Street) in $\mathrm{Cat}$, $M$ = 0-[[initial functors]], $M$ = [[discrete opfibration]]s \item in $\mathrm{Cat}$, $M$ = [[conservative functor]]s, $E$ = left orthogonal of $M$ (``iterated strict localizations'' after A. Joyal) \item in the category of small categories where morphisms are functors which are [[exact functor|left exact]] and have [[right adjoint]]s, $E$ = class of all such functors which are also localizations, $M$ = class of all such functors which are also conservative \item if $F\to C$ is a [[fibered category]] in the sense of Grothendieck, then $F$ admits a factorization system $(E,M)$ where $E$ = arrows whose projection to $C$ is invertible, $M$ = cartesian arrows in $F$ \item See the (\hyperlink{Joyal}{catlab}) for more examples. \end{itemize} \hypertarget{generalizations}{}\subsection*{{Generalizations}}\label{generalizations} There is a [[categorification|categorified]] notion of a [[factorization system on a 2-category]], in which lifts are only required to exist and be unique up to isomorphism. Some examples include: \begin{itemize}% \item In [[Cat]], [[(eso, fully faithful) factorization system]] \item In [[Cat]], [[(eso+full, faithful) factorization system]] \end{itemize} Similarly, we can have a [[factorization system in an (∞,1)-category]], and so on; see the links below for other generalizations. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[factorization system]] \begin{itemize}% \item [[weak factorization system]] \item \textbf{orthogonal factorization system} \item [[reflective factorization system]] \item [[stable factorization system]] \end{itemize} \item [[factorization system in a 2-category]] \item [[factorization system in an (∞,1)-category]] \begin{itemize}% \item [[orthogonal factorization system in an (∞,1)-category]] \item [[orthogonal factorization system in a derivator]] \end{itemize} \item [[factorization structure for sinks]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[André Joyal]] \emph{[[joyalscatlab:Factorization systems]]} \end{itemize} [[!redirects orthogonal factorization system]] [[!redirects orthogonal factorization systems]] [[!redirects orthogonal factorisation system]] [[!redirects orthogonal factorisation systems]] [[!redirects unique factorization system]] [[!redirects unique factorization systems]] [[!redirects unique factorisation system]] [[!redirects unique factorisation systems]] [[!redirects prefactorization system]] [[!redirects prefactorization systems]] \end{document}