\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{orthogonal spectrum} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{orthogonal_spectra}{Orthogonal spectra}\dotfill \pageref*{orthogonal_spectra} \linebreak \noindent\hyperlink{HomotopyGroups}{Homotopy groups and Weak homotopy equivalences}\dotfill \pageref*{HomotopyGroups} \linebreak \noindent\hyperlink{SmashProduct}{Smash product}\dotfill \pageref*{SmashProduct} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_the_jhomomorphism}{Relation to the J-homomorphism}\dotfill \pageref*{relation_to_the_jhomomorphism} \linebreak \noindent\hyperlink{relation_to_the_cobordism_hypothesis}{Relation to the cobordism hypothesis}\dotfill \pageref*{relation_to_the_cobordism_hypothesis} \linebreak \noindent\hyperlink{relation_to_global_equivariant_stable_homotopy_theory}{Relation to global equivariant stable homotopy theory}\dotfill \pageref*{relation_to_global_equivariant_stable_homotopy_theory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Orthogonal spectra are one version of [[highly structured spectra]] that support a [[symmetric monoidal smash product of spectra]]. An orthogonal spectrum is a sequence of [[pointed topological spaces]] $\{X_n\}_{n \in \mathbb{N}}$ equipped with maps $X_n \wedge S^1 \longrightarrow X_{n+1}$ from the [[suspension]] of one into the next, but such that the $n$th [[topological space]] is equipped with an [[action]] of the [[orthogonal group]] $O(n)$ and such that the induced structure maps. $X_n \wedge S^k \longrightarrow X_{n+k}$ are all $O(n)\times O(k)$-[[equivariance|equivariant]], hence are [[action]] [[homomorphisms]]. There is a natural [[homotopy theory]] of such orthogonal spectra and it is equivalent to the standard [[stable homotopy theory]] (\hyperlink{MMSS08}{MMSS 98}). The [[category]] of \emph{orthogonal spectra} is a [[presentable (∞,1)-category|presentation]] of the [[symmetric monoidal (∞,1)-category]] [[stable (infinity,1)-category of spectra|of spectra]], with the special property that it implements the [[smash product of spectra]] such as to yield itself a [[symmetric monoidal category|symmetric]] [[monoidal model category|monoidal]] [[model category of spectra]]: the \emph{[[model structure on orthogonal spectra]]}. This implies in particular that with respect to this [[symmetric smash product of spectra]] an [[E-∞ ring]] is presented simply as a plain [[commutative monoid]] [[internalization|in]] orthogonal spectra (``[[highly structured ring spectrum]]''). See at \emph{[[orthogonal ring spectrum]]}. Other presentations sharing this property are \emph{[[symmetric spectra]]} and \emph{[[S-modules]]}. In contrast to symmetric spectra, orthogonal spectra need to consist of [[topological spaces]] instead of [[simplicial sets]]. One advantages of orthogonal spectra over symmetric spectra is that for them the naive definition of [[homotopy groups]] comes out homotopically correct, while for symmetric spectra an intransparent replacement is needed first (see \href{symmetric+spectrum#HomotopyGroups}{symmetric spectrum -- Homotopy groups}). Another advantage is that orthogonal spectra support a similarly good model for [[equivariant stable homotopy theory]] with equivariance by [[compact Lie groups]], while [[symmetric spectra]] share this property only for equivariance under [[finite groups]]. \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} \hypertarget{orthogonal_spectra}{}\subsubsection*{{Orthogonal spectra}}\label{orthogonal_spectra} \begin{defn} \label{OrthogonalSpectrum}\hypertarget{OrthogonalSpectrum}{} An \emph{orthogonal spectrum} $X$ consists of for each $n \in \mathbb{N}$ \begin{enumerate}% \item a sequence of [[pointed topological spaces]] $X_n$ (the \emph{$n$th level}); \item a base-point preserving [[continuous function|continuous]] [[action]] of the [[topological group|topological]] [[orthogonal group]] $O(n)$ on $X_n$; \item based-point preserving [[continuous functions]] $\sigma_n \colon X_n \wedge S^1 \longrightarrow X_{n+1}$ from the [[smash product]] with the [[1-sphere]] (the \emph{$n$th structure map}) \end{enumerate} such that for all $n,k \in \mathbb{N}$ with $k \geq 1$ \begin{itemize}% \item the [[continuous functions]] $\sigma^k \colon X_n \wedge S^k \longrightarrow X_{n+k}$ given as the [[compositions]] \begin{displaymath} \sigma^k \colon X_n \wedge S^k \stackrel{\sigma_n \wedge S^{k-1}}{\longrightarrow} X_{n+1} \wedge S^{k-1} \stackrel{\sigma_{n-1} \wedge S^{k-2}}{\longrightarrow} X_{n+2} \wedge S^{k-2} \stackrel{\sigma_{n-2} \wedge S^{k-3}}{\longrightarrow} \cdots \stackrel{\sigma_{n+k-2} \wedge S^{1}}{\longrightarrow} X_{n+k-1} \wedge S^1 \stackrel{\sigma_{n+k-1} }{\longrightarrow} X_{n+k} \end{displaymath} is $O(n) \times O(k)$-equivariant (with respect to the $O(k)$-[[action]] on $S^k$ regarded as the [[representation sphere]] of the defining action on $\mathbb{R}^k$ and via the diagonal embedding $O(n)\times O(k) \hookrightarrow O(n+k)$). \end{itemize} A [[homomorphism]] $f \colon X \longrightarrow Y$ of orthogonal spectra is a sequence of $O(n)$-equivariant based continuous functions $f_n \colon X_n \longrightarrow Y_n$ [[commuting diagram|commuting]] with the structure maps \begin{displaymath} \itexarray{ X_n \wedge S^1 & \stackrel{\sigma_n^X}{\longrightarrow} & X_{n+1} \\ \downarrow^{\mathrlap{f_n}} && \downarrow^{\mathrlap{f_{n+1}}} \\ Y_n \wedge S^1 & \stackrel{\sigma_n^Y}{\longrightarrow} & Y_{n+1} } \,. \end{displaymath} We write $OrthSpectra$ for the [[category]] of orthogonal spectra with homomorphisms between them. \end{defn} \hypertarget{HomotopyGroups}{}\subsubsection*{{Homotopy groups and Weak homotopy equivalences}}\label{HomotopyGroups} \begin{defn} \label{StabilizationMap}\hypertarget{StabilizationMap}{} Given an orthogonal spectrum $X$, def. \ref{OrthogonalSpectrum}, then for $n,k \in \mathbb{N}$ the \emph{stabilization map} $\iota_{n,k}$ on [[homotopy groups]] $\pi_\bullet(X_\bullet)$ of the level spaces $X_\bullet$ is \begin{displaymath} \iota_{n,k} \;\colon\; \pi_{n+k} X_n \stackrel{(-)\wedge S^1}{\longrightarrow} \pi_{n+k+1}(X_n \wedge S^1) \stackrel{(\sigma_n)_\ast}{\longrightarrow} \pi_{n+k+1} X_{n+1} \,. \end{displaymath} \end{defn} \begin{defn} \label{StableHomotopyGroup}\hypertarget{StableHomotopyGroup}{} Given an orthogonal spectrum $X$, def. \ref{OrthogonalSpectrum}, then for $k \in \mathbb{Z}$ its $k$th \emph{stable [[homotopy group]]} is the [[colimit]] \begin{displaymath} \pi_k X \;\coloneqq\; \underset{\longrightarrow}{\lim}_n \pi_{n+k} X_n \end{displaymath} of the [[homotopy groups]] of the level spaces, taken with respect to the stabilization maps, def. \ref{StabilizationMap}. \end{defn} \begin{defn} \label{WeakHomotopyEquivalences}\hypertarget{WeakHomotopyEquivalences}{} A homomorphism $f\colon X \longrightarrow Y$ of orthogonal spectra, def. \ref{OrthogonalSpectrum}, is a \emph{[[weak homotopy equivalence]]} if it induces [[isomorphisms]] (of [[abelian groups]]) \begin{displaymath} \pi_\bullet(f) \;\colon\; \pi_\bullet(X) \longrightarrow \pi_\bullet(Y) \end{displaymath} on all stable homotopy groups, def. \ref{StableHomotopyGroup}. \end{defn} \begin{remark} \label{}\hypertarget{}{} The [[simplicial localization]] of the category of orthogonal spectra, def. \ref{OrthogonalSpectrum}, at the weak homotopy equivalences, def. \ref{WeakHomotopyEquivalences}, is [[equivalence of (infinity,1)-categories|equivalent]] to the [[(infinity,1)-category of spectra]]: \begin{displaymath} L_{whe} OrthSpectra \simeq Spectra \,. \end{displaymath} See at \emph{[[model structure on orthogonal spectra]]}. \end{remark} \hypertarget{SmashProduct}{}\subsubsection*{{Smash product}}\label{SmashProduct} \begin{defn} \label{SmashProduct}\hypertarget{SmashProduct}{} Given two orthogonal spectra $X,Y\in OrthSpectra$, def. \ref{OrthogonalSpectrum}, their \emph{[[smash product of spectra]]} is the orthogonal spectrum \begin{displaymath} X \wedge Y \in OrthSpectrum \end{displaymath} whose $n$th level space is the [[coequalizer]] \begin{displaymath} \left( \underset{p+1+q = n}{\bigvee} O(n)_+ \underset{O(p)\times 1 \times O(q)}{\wedge} X_p \wedge S^1 \wedge X_q \right) \stackrel{\overset{}{\longrightarrow}}{\underset{}{\longrightarrow}} \left( \underset{p+q = n}{\bigvee} O(n)_+ \underset{O(p)\times O(q)}{\wedge} X_p \wedge X_q \right) \longrightarrow \left(X\wedge Y\right)_{n} \end{displaymath} of the two maps whose components are $\sigma_p^X \wedge Y_q$ and $X_p \wedge \sigma_q^Y \circ X_p \wedge braid_{S^1, Y_q}$, respectively, and whose structure maps are induced, under the coequalizer, by the component maps $X_p\wedge \sigma_q^Y$. \end{defn} \begin{prop} \label{}\hypertarget{}{} The [[smash product of spectra]] from def. \ref{SmashProduct} naturally extends to a [[functor]] \begin{displaymath} (-)\wedge (-) \;\colon\; OrthSpectra \times OrthSpectra \longrightarrow OrthSpectra \end{displaymath} which makes $OrthSpectra$ into a [[symmetric monoidal category]] with [[unit]] the orthogonal [[sphere spectrum]] $\mathbb{S}$, example \ref{OrthogonalSphereSpectrum}. \end{prop} \begin{defn} \label{BilinearHomomorphisms}\hypertarget{BilinearHomomorphisms}{} For $X,Y,Z \in OrthSpectrum$, def. \ref{OrthogonalSpectrum}, a \emph{[[bilinear map|bilinear]]-homomorphism} \begin{displaymath} b \;\colon\; (X,Y) \longrightarrow Z \,, \end{displaymath} is a collection of, for each $p,q\in \mathbb{N}$, base-point preserving $O(p) \times O(q)$-equivariant [[continuous functions]] \begin{displaymath} b_{p,q} \;\colon\; X_p \wedge X_q \longrightarrow Z_{p+q} \end{displaymath} (out of the [[smash product]] of [[pointed topological spaces]]) which are \emph{[[bilinear map|bilinear]]} in that the following [[diagrams]] [[commuting diagram|commutes]]: \begin{displaymath} \itexarray{ X_p \wedge X_q \wedge S^1 &\stackrel{b_{p,q} \wedge S^1}{\longrightarrow}& Z_{p+q} \wedge S^1 \\ \downarrow^{\mathrlap{X_p \wedge \sigma_q}} && \downarrow^{\mathrlap{\sigma_{p+q}}} \\ X_p \wedge Y_{q+1} &\stackrel{b_{p,q+1}}{\longrightarrow}& Z_{p+q+1} } \;\;\;\;,\;\;\;\;\; \itexarray{ X_p \wedge X_q \wedge S^1 &\stackrel{b_{p,q} \wedge S^1}{\longrightarrow}& Z_{p+q} \wedge S^1 \\ \downarrow^{\mathrlap{X_p \wedge braid_{X_q, S^1}}} && \downarrow^{\mathrlap{id}} \\ X_p \wedge S^1 \wedge X_q && Z_{p+q} \wedge S^1 \\ \downarrow^{\mathrlap{\sigma_p \wedge Y_q}} && \downarrow^{\mathrlap{\sigma_{p+q}}} \\ X_p \wedge Y_{q+1} &\stackrel{b_{p,q+1}}{\longrightarrow}& Z_{p+q+1} } \,. \end{displaymath} \end{defn} \begin{prop} \label{}\hypertarget{}{} The smash product of orthogonal spectra $X \wedge Y$, def. \ref{SmashProduct}, is the [[universal construction|universal]] recipient in $OrthSpectra$ of bilinear maps, def. \ref{BilinearHomomorphisms}, out of $(X,Y)$. \end{prop} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{OrthogonalSphereSpectrum}\hypertarget{OrthogonalSphereSpectrum}{} The canonical incarnation of the [[sphere spectrum]] $\mathbb{S}$ as an orthogonal spectrum, def. \ref{OrthogonalSpectrum}, has $n$th level space \begin{displaymath} \mathbb{S}_n = S^n \end{displaymath} the [[representation sphere]] of the defining [[linear representation]] of $O(n)$ on $\mathbb{R}^n$, and as structure maps the canonical [[smash product]] [[isomorphisms]] ([[homeomorphisms]]) \begin{displaymath} S^p \wedge S^1 \longrightarrow S^{p+1} \,. \end{displaymath} \end{example} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_the_jhomomorphism}{}\subsubsection*{{Relation to the J-homomorphism}}\label{relation_to_the_jhomomorphism} relation to the [[J-homomorphism]]: see (\hyperlink{Schwede15}{Schwede 15, example 4.22}) \hypertarget{relation_to_the_cobordism_hypothesis}{}\subsubsection*{{Relation to the cobordism hypothesis}}\label{relation_to_the_cobordism_hypothesis} \begin{quote}% check \end{quote} A [[connective spectrum]] is equivalently a grouplike [[E-∞ space]], hence a [[Picard ∞-groupoid]]. As such it is an [[(∞,0)-category]] of [[fully dualizable objects]]. By the [[cobordism hypothesis]] this means that it is equipped with an $O(n)$-[[∞-action]] for all $n$, coming from the action $O(n)$ on the [[framed manifold|n-framings]] of the point in the [[(∞,n)-category of cobordisms]]. This $O(n)$-action is that which is encoded by the definition of orthogonal spectrum (\hyperlink{Lurie09}{Lurie 09, example 2.4.15}). \hypertarget{relation_to_global_equivariant_stable_homotopy_theory}{}\subsubsection*{{Relation to global equivariant stable homotopy theory}}\label{relation_to_global_equivariant_stable_homotopy_theory} Since orthogonal spectra are by definition equipped with orthogonal group [[actions]], they serve as models for [[equivariant homotopy theory]] ``for all groups at once'', called \emph{[[global stable homotopy theory]]}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[free orthogonal spectrum]] \item [[orthogonal ring spectrum]] \end{itemize} [[model structure on spectra]], [[symmetric monoidal smash product of spectra]] \begin{itemize}% \item [[symmetric spectrum]], [[model structure on symmetric spectra]] \item \textbf{orthogonal spectrum}, [[model structure on orthogonal spectra]] \item [[S-module]], [[model structure on S-modules]] \item [[global equivariant stable homotopy theory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Reviews include \begin{itemize}% \item Knut Berg, \emph{Orthogonal spectra} (\href{http://folk.uio.no/rognes/theses/orthogonal.pdf}{pdf}) \item [[Cary Malkiewich]], section 2.3 of \emph{The stable homotopy category}, 2014 (\href{http://math.stanford.edu/~carym/stable.pdf}{pdf}) \end{itemize} Lecture notes include \begin{itemize}% \item [[Stefan Schwede]], chapter I, section 7.1 of \emph{[[Symmetric spectra]]} (2012) \item [[Stefan Schwede]], section 1 of \emph{[[Lectures on Equivariant Stable Homotopy Theory]]}, 2014 (\href{http://www.math.uni-bonn.de/people/schwede/equivariant.pdf}{pdf}) \end{itemize} and (\hyperlink{Schwede15}{Schwede 15}) (take throughout $\mathcal{F} = \{1\}$ there to be the trivial family to restrict to the non-equivariant case). Orthogonal spectra were introduced around \begin{itemize}% \item [[Michael Mandell]], [[Peter May]], [[Stefan Schwede]], [[Brooke Shipley]], \emph{Diagram spaces, diagram spectra, and FSP's}, 1998 (\href{http://www.math.uiuc.edu/K-theory/0319/}{KTheory:0319}) \end{itemize} and their [[homotopy theory]] and [[Quillen equivalences]] of [[model categories of spectra]] were discussed in \begin{itemize}% \item [[Michael Mandell]], [[Peter May]], \emph{Orthogonal spectra and $S$-modules} (\href{http://www.math.uiuc.edu/K-theory/0318/}{K-theory:0318}, \href{http://www.math.uchicago.edu/~may/PAPERS/mmLMSDec30.pdf}{pdf}) \item [[Michael Mandell]], [[Peter May]], [[Stefan Schwede]], [[Brooke Shipley]], \emph{[[Model categories of diagram spectra]]}, 1998 (\href{http://www.math.uiuc.edu/K-theory/0320/}{KTheory:0320}) \end{itemize} and for [[equivariant spectra]] in \begin{itemize}% \item [[Michael Mandell]], [[Peter May]], \emph{Equivariant orthogonal spectra and $S$-modules}, 2000 \href{http://www.math.uiuc.edu/K-theory/0408/}{KTheory:0408} \end{itemize} and for [[operads]] enriched over orthogonal spectra in \begin{itemize}% \item [[Tore Kro]], \emph{Model structure on operads in orthogonal spectra}, Homology Homotopy Appl. Volume 9, Number 2 (2007), 397-412.(\href{http://projecteuclid.org/euclid.hha/1201127343}{Euclid}) \end{itemize} and in the context of [[equivariant stable homotopy theory]] in (\hyperlink{Schwede14}{Schwede 14}) and in \begin{itemize}% \item [[Michael Mandell]], [[Peter May]], \emph{Equivariant orthogonal spectra and S-modules}. Preprint, April 29, 2000, (\href{http://www.math.uiuc.edu/K-theory/0408/}{KTheory:0408}) \end{itemize} and in [[global equivariant stable homotopy theory]]: \begin{itemize}% \item [[Stefan Schwede]], \emph{[[Global homotopy theory]]}, 2015 (\href{http://www.math.uni-bonn.de/people/schwede/global.pdf}{pdf}) \end{itemize} See also \begin{itemize}% \item [[Jacob Lurie]], \emph{[[On the Classification of Topological Field Theories]]}, Current Developments in Mathematics Volume 2008 (2009), 129-280 (\href{http://arxiv.org/abs/0905.0465}{arXiv:0905.0465}) \end{itemize} [[!redirects orthogonal spectra]] \end{document}