\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{orthosymplectic super Lie algebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{supergeometry}{}\paragraph*{{Super-Geometry}}\label{supergeometry} [[!include supergeometry - contents]] \hypertarget{lie_theory}{}\paragraph*{{Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{in_superstring_theory}{In superstring theory}\dotfill \pageref*{in_superstring_theory} \linebreak \noindent\hyperlink{representation_theory}{Representation theory}\dotfill \pageref*{representation_theory} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{orthosymplectic supergroup} $OSp(N|2p)$ is the sub-[[supergroup]] of the [[general linear supergroup]] $GL(N|2p)$ on those elements which preserve the canonical graded-symmetric [[bilinear form]] on $\mathbb{R}^{N|2p}$, i.e. the form which is the canonical symmetric bilinear form on the even elements $\mathbb{R}^{N}$, is the canonical [[symplectic form]] on the odd elements in $\mathbb{R}^{0|2p}$ and is zero on mixed pairs of elements. The corresponding [[super Lie algebras]] are called the \emph{orthosymplectic Lie algebras} $\mathfrak{osp}(N|2p)$. Over a [[field]] of [[characteristic zero]] these constitute the infinite $B$- and $D$-series in the \href{super%20Lie%20algebra#Classification}{classification of simple super Lie algebras}. They are closely related to [[superconformal]] symmetry (e.g. \hyperlink{DAuriaFerrareLledoVaradarajan00}{D'Auria-Ferrara-Lledo-Varadarajan 00}), see at \emph{\href{supersymmetry#ClassificationSuperconformal}{supersymmetry -- Classification -- Superconformal symmetry}}. \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \begin{itemize}% \item $\mathfrak{osp}(1\vert 32)$ is a limiting case of the [[M-theory super Lie algebra]] (\hyperlink{FernandezIzquierdoOlmo15}{Fernandez-Izquierdo-Olmo 15}). Further relation also to the [[type II supersymmetry algebra]] had been discussed in (\hyperlink{BergshoessProeyen00}{Bergshoess-Proeyen 00}). \item The [[M-theory super Lie algebra]] is actually a sub-super Lie algebra of $\mathfrak{osp}(1\vert 64)$ (\hyperlink{vanHoltenVanProeyen82}{vanHolten-VanProeyen 82}, \hyperlink{BarsDelidumanMinic99}{Bars-Deliduma-nMinic 99, (11)-(15)}, \hyperlink{West00}{West 00, section 7}) In fact $OSp(1\vert 64)$ is the smallest simple supergroup that contains the [[M-theory super Lie algebra]]. Moreover, it is generated from its M-theory sub-algebra and the [[special conformal transformations]] (\hyperlink{BarsDelidumanMinic99}{Bars-Deliduman-Minic 99, p. 5}) \item The [[super anti de Sitter spacetimes]] are quotients of orthosymplectic super Lie groups: \end{itemize} \begin{tabular}{l|l} $\phantom{A}$$d$$\phantom{A}$&$\phantom{A}$[[super anti de Sitter spacetime]]$\phantom{A}$\\ \hline $\phantom{A}$4$\phantom{A}$&$\;\;\;\;\frac{OSp(8\vert4)}{Spin(3,1) \times SO(7)}\;\;\;\;$\\ $\phantom{A}$5$\phantom{A}$&$\;\;\;\;\frac{SU(2,2 \vert 5)}{Spin(4,1)\times SO(5)}\;\;\;\;$\\ $\phantom{A}$7$\phantom{A}$&$\;\;\;\;\frac{OSp(6,2 \vert 4)}{Spin(6,1) \times SO(4)}\;\;\;\;$\\ \end{tabular} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[orthogonal Lie algebra]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{itemize}% \item [[Victor Kac]], pages 9-10 of \emph{A sketch of Lie superalgebra theory}, Comm. Math. Phys. Volume 53, Number 1 (1977), 31-64. (\href{https://projecteuclid.org/euclid.cmp/1103900590}{EUCLID}) \item [[Manfred Scheunert]], chapter II, 4.3.A of \emph{The theory of Lie superalgebras. An introduction}, Lect. Notes Math. 716 (1979) \item Richard Joseph Farmer, \emph{Orthosymplectic superalgebras in mathematics and science}, PhD Thesis (1984) (\href{http://eprints.utas.edu.au/19542/}{web}, \href{http://eprints.utas.edu.au/19542/1/whole_FarmerRichardJoseph1985_thesis.pdf}{pdf}) \item [[Leonardo Castellani]], [[Riccardo D'Auria]], [[Pietro Fré]], section II.2.2 in \emph{[[Supergravity and Superstrings - A Geometric Perspective]]}, World Scientific (1991) \item [[Riccardo D'Auria]], S. Ferrara, M. A. Lled\'o{}, [[Veeravalli Varadarajan]], \emph{Spinor Algebras}, J.Geom.Phys. 40 (2001) 101-128 (\href{http://arxiv.org/abs/hep-th/0010124}{arXiv:hep-th/0010124}) \item N. A. Gromov, I. V. Kostyakov, V. V. Kuratov, \emph{Cayley-Klein contractions of orthosymplectic superalgebras} (\href{http://arxiv.org/abs/hep-th/0110257}{arXiv:hep-th/0110257}) \item Steven V Sam, \emph{Orthosymplectic Lie superalgebras, Koszul duality, and a complete intersection analogue of the Eagon-Northcott complex} (\href{http://arxiv.org/abs/1312.2255}{arXiv:1312.2255}) \item G.I. Lehrer, R.B. Zhang, \emph{The second fundamental theorem of invariant theory for the orthosymplectic supergroup} (\href{http://arxiv.org/abs/1407.1058}{arXiv:1407.1058}) \end{itemize} \hypertarget{in_superstring_theory}{}\subsubsection*{{In superstring theory}}\label{in_superstring_theory} \begin{itemize}% \item [[Igor Bandos]], Jerzy Lukierski, Christian Preitschopf, [[Dmitri Sorokin]], \emph{OSp supergroup manifolds, superparticles and supertwistors}, Phys.Rev.D61:065009, 2000 (\href{https://arxiv.org/abs/hep-th/9907113}{arXiv:hep-th/9907113}) \item [[Eric Bergshoeff]], [[Antoine Van Proeyen]], \emph{The many faces of $OSp(1|32)$}, Class. Quantum Grav. 17 (2000) 3277--3303 (\href{http://arxiv.org/abs/hep-th/0003261}{arXiv:hep-th/0003261}) \item [[Horatiu Nastase]], \emph{Towards a Chern-Simons M theory of $OSp(1\vert 32) \times OSp(1\vert 32)$} (\href{https://arxiv.org/abs/hep-th/0306269}{arXiv:hep-th/0306269}) \item J.J. Fernandez, J.M. Izquierdo, M.A. del Olmo, \emph{Contractions from $osp(1|32) \oplus osp(1|32)$ to the M-theory superalgebra extended by additional fermionic generators}, Nuclear Physics B Volume 897, August 2015, Pages 87--97 (\href{http://arxiv.org/abs/1504.05946}{arXiv:1504.05946}) \item [[Jan-Willem van Holten]], [[Antoine Van Proeyen]], \emph{$N=1$ Supersymmetry Algebras in $D=2$, $D=3$, $D=4$ $MOD-8$}, J.Phys. A15 (1982) 3763 (\href{http://inspirehep.net/record/177060}{spire:177060}) \item [[Itzhak Bars]], C. Deliduman, D. Minic, \emph{Lifting M-theory to Two-Time Physics}, Phys.Lett. B457 (1999) 275-284 (\href{https://arxiv.org/abs/hep-th/9904063}{arXiv:hep-th/9904063}) \item [[Itzhak Bars]], \emph{2T Physics Formulation of Superconformal Dynamics Relating to Twistors and Supertwistors}, Phys.Lett. B483 (2000) 248-256 (\href{https://arxiv.org/abs/hep-th/0004090}{arXiv:hep-th/0004090}) \item [[Peter West]], \emph{Hidden Superconformal Symmetry in M Theory}, JHEP 0008:007, 2000 (\href{https://arxiv.org/abs/hep-th/0005270}{arXiv:hep-th/0005270}) \end{itemize} \hypertarget{representation_theory}{}\subsubsection*{{Representation theory}}\label{representation_theory} The [[representation theory]] ([[singleton representation|singleton representations]]) of the orthosymplectic group is discussed in \begin{itemize}% \item [[Hermann Nicolai]], [[Ergin Sezgin]], \emph{Singleton representations of $Osp(N,4)$}, Physics Letters B, Volume 143, Issues 4--6, 16 August 1984, Pages 389-395 \end{itemize} [[!redirects osp]] [[!redirects orthosymplectic super Lie algebras]] [[!redirects orthosymplectic supergroup]] [[!redirects orthosymplectic supergroups]] [[!redirects orthosymplectic super group]] [[!redirects orthosymplectic super groups]] [[!redirects orthosymplectic super Lie group]] [[!redirects orthosymplectic super Lie groups]] \end{document}