\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{over category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_codomain_fibration}{Relation to codomain fibration}\dotfill \pageref*{relation_to_codomain_fibration} \linebreak \noindent\hyperlink{Adjunction}{Adjunctions on overcategories}\dotfill \pageref*{Adjunction} \linebreak \noindent\hyperlink{RelWithPresheaves}{Presheaves on over-categories and over-categories of presheaves}\dotfill \pageref*{RelWithPresheaves} \linebreak \noindent\hyperlink{LimitsAndColimits}{Limits and colimits}\dotfill \pageref*{LimitsAndColimits} \linebreak \noindent\hyperlink{initial_and_terminal_objects}{Initial and terminal objects}\dotfill \pageref*{initial_and_terminal_objects} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The \textbf{slice category} or \textbf{over category} $\mathbf{C}/c$ of a [[category]] $\mathbf{C}$ over an object $c \in \mathbf{C}$ has \begin{itemize}% \item objects that are all arrows $f \in \mathbf{C}$ such that $cod(f) = c$, and \item morphisms $g: X \to X' \in \mathbf{C}$ from $f:X \to c$ to $f': X' \to c$ such that $f' \circ g = f$. \end{itemize} \begin{displaymath} C/c = \left\lbrace \itexarray{ X &&\stackrel{g}{\to}&& X' \\ & {}_f \searrow && \swarrow_{f'} \\ && c } \right\rbrace \end{displaymath} The slice category is a special case of a [[comma category]]. There is a [[forgetful functor]] $U_c: \mathbf{C}/c \to \mathbf{C}$ which maps an object $f:X \to c$ to its domain $X$ and a morphism $g: X \to X' \in \mathbf{C}/c$ (from $f:X \to c$ to $f': X' \to c$ such that $f' \circ g = f$) to the morphism $g: X \to X'$. The [[duality|dual]] notion is an [[under category]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item If $\mathbf{C} = \mathbf{P}$ is a [[partial order|poset]] and $p \in \mathbf{P}$, then the slice category $\mathbf{P}/p$ is the [[down set]] $\downarrow (p)$ of elements $q \in \mathbf{P}$ with $q \leq p$. \item If $1$ is a [[terminal object]] in $\mathbf{C}$, then $\mathbf{C}/1$ is isomorphic to $\mathbf{C}$. \item For $X$ a [[topological space]] then the [[category of covering spaces]] over $X$ is a [[full subcategory]] of the slice category $Top_{/X}$ of the [[category of topological spaces]]. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_codomain_fibration}{}\subsubsection*{{Relation to codomain fibration}}\label{relation_to_codomain_fibration} The assignment of overcategories $C/c$ to objects $c \in C$ extends to a [[functor]] \begin{displaymath} C/(-) : C \to Cat \end{displaymath} Under the [[Grothendieck construction]] this functor corresponds to the [[codomain fibration]] \begin{displaymath} cod : [I,C] \to C \end{displaymath} from the [[arrow category]] of $C$. (Note that unless $C$ has [[pullbacks]], this functor is not actually a [[Grothendieck fibration|fibration]], though it is always an opfibration.) \hypertarget{Adjunction}{}\subsubsection*{{Adjunctions on overcategories}}\label{Adjunction} \begin{prop} \label{}\hypertarget{}{} Let \begin{displaymath} (L \dashv R) : D \stackrel{\overset{L}{\leftarrow}}{\underset{R}{\to}} C \end{displaymath} be a pair of [[adjoint functors]], where the category $C$ has all [[pullbacks]]. Then for every object $X \in C$ there is induced a pair of adjoint functors between the slice categories \begin{displaymath} (L/X \dashv R/X) : D/(L X) \stackrel{\overset{L/X}{\leftarrow}}{\underset{R/X}{\to}} C/X \end{displaymath} where \begin{itemize}% \item $L/X$ is the evident induced functor; \item $R/X$ is the composite \begin{displaymath} R/X : D/{L X} \stackrel{R}{\to} C/{(R L X)} \stackrel{i_{X}^*}{\to} C/X \end{displaymath} of the evident functor induced by $R$ with the [[pullback]] along the $(L \dashv R)$-[[unit of an adjunction|unit]] at $X$. \end{itemize} \end{prop} \hypertarget{RelWithPresheaves}{}\subsubsection*{{Presheaves on over-categories and over-categories of presheaves}}\label{RelWithPresheaves} Let $C$ be a [[category]], $c$ an [[object]] of $C$ and let $C/c$ be the [[over category]] of $C$ over $c$. Write $PSh(C/c) = [(C/c)^{op}, Set]$ for the [[category of presheaves]] on $C/c$ and write $PSh(C)/Y(c)$ for the [[over category]] of [[presheaf|presheaves]] on $C$ over the presheaf $Y(c)$, where $Y : C \to PSh(c)$ is the [[Yoneda embedding]]. \begin{prop} \label{}\hypertarget{}{} There is an [[equivalence]] of categories \begin{displaymath} e : PSh(C/c) \stackrel{\simeq}{\to} PSh(C)/Y(c) \,. \end{displaymath} \end{prop} \begin{proof} The functor $e$ takes $F \in PSh(C/c)$ to the presheaf $F' : d \mapsto \sqcup_{f \in C(d,c)} F(f)$ which is equipped with the natural transformation $\eta : F' \to Y(c)$ with component map $\eta_d \sqcup_{f \in C(d,c)} F(f) \to C(d,c)$. A weak inverse of $e$ is given by the functor \begin{displaymath} \bar e : PSh(C)/Y(c) \to PSh(C/c) \end{displaymath} which sends $\eta : F' \to Y(C))$ to $F \in PSh(C/c)$ given by \begin{displaymath} F : (f : d \to c) \mapsto F'(d)|_c \,, \end{displaymath} where $F'(d)|_c$ is the [[pullback]] \begin{displaymath} \itexarray{ F'(d)|_c &\to& F'(d) \\ \downarrow && \downarrow^{\eta_d} \\ pt &\stackrel{f}{\to}& C(d,c) } \,. \end{displaymath} \end{proof} \begin{example} \label{}\hypertarget{}{} Suppose the presheaf $F \in PSh(C/c)$ does not actually depend on the morphsims to $C$, i.e. suppose that it factors through the forgetful functor from the [[over category]] to $C$: \begin{displaymath} F : (C/c)^{op} \to C^{op} \to Set \,. \end{displaymath} Then $F'(d) = \sqcup_{f \in C(d,c)} F(f) = \sqcup_{f \in C(d,c)} F(d) \simeq C(d,c) \times F(d)$ and hence $F ' = Y(c) \times F$ with respect to the [[closed monoidal structure on presheaves]]. \end{example} See also [[functors and comma categories]]. For the analogous statement in [[(∞,1)-category]] theory see at [[(∞,1)-category of (∞,1)-presheaves]]. \hypertarget{LimitsAndColimits}{}\subsubsection*{{Limits and colimits}}\label{LimitsAndColimits} \begin{prop} \label{}\hypertarget{}{} A [[limit]] in an [[under category]] is computed as a limit in the underlying category. Precisely: let $C$ be a [[category]], $t \in C$ an [[object]], and $t/C$ the corresponding [[under category]], and $p : t/C \to C$ the obvious projection. Let $F : D \to t/C$ be any [[functor]]. Then, if it exists, the [[limit]] over $p \circ F$ in $C$ is the image under $p$ of the limit over $F$: \begin{displaymath} p(\lim F) \simeq \lim (p F) \end{displaymath} and $\lim F$ is uniquely characterized by $\lim (p F)$. \end{prop} \begin{proof} Over a morphism $\gamma : d \to d'$ in $D$ the limiting cone over $p F$ (which exists by assumption) looks like \begin{displaymath} \itexarray{ && \lim p F \\ & \swarrow && \searrow \\ p F(d) &&\stackrel{p F(\gamma)}{\to}&& p F(d') } \end{displaymath} By the universal property of the limit this has a unique lift to a cone in the [[under category]] $t/C$ over $F$: \begin{displaymath} \itexarray{ && t \\ & \swarrow &\downarrow & \searrow \\ && \lim p F \\ \downarrow & \swarrow && \searrow & \downarrow \\ p F(d) &&\stackrel{p F(\gamma)}{\to}&& p F(d') } \end{displaymath} It therefore remains to show that this is indeed a limiting cone over $F$. Again, this is immediate from the universal property of the limit in $C$. For let $t \to Q$ be another cone over $F$ in $t/C$, then $Q$ is another cone over $p F$ in $C$ and we get in $C$ a universal morphism $Q \to \lim p F$ \begin{displaymath} \itexarray{ && t \\ & \swarrow & \downarrow & \searrow \\ && Q \\ \downarrow & \swarrow &\downarrow & \searrow & \downarrow \\ && \lim p F \\ \downarrow & \swarrow && \searrow & \downarrow \\ p F(d) &&\stackrel{p F(\gamma)}{\to}&& p F(d') } \end{displaymath} A glance at the diagram above shows that the composite $t \to Q \to \lim p F$ constitutes a morphism of cones in $C$ into the limiting cone over $p F$. Hence it must equal our morphism $t \to \lim p F$, by the universal property of $\lim p F$, and hence the above diagram does commute as indicated. This shows that the morphism $Q \to \lim p F$ which was the unique one giving a cone morphism on $C$ does lift to a cone morphism in $t/C$, which is then necessarily unique, too. This demonstrates the required universal property of $t \to \lim p F$ and thus identifies it with $\lim F$. \end{proof} \begin{remark} \label{}\hypertarget{}{} One often says ``$p$ [[reflected limit|reflects limits]]'' to express the conclusion of this proposition. A conceptual way to consider this result is by appeal to a more general one: if $U: A \to C$ is [[monadic functor|monadic]] (i.e., has a left adjoint $F$ such that the canonical comparison functor $A \to (U F)-Alg$ is an equivalence), then $U$ both reflects and preserves limits. In the present case, the projection $p: A = t/C \to C$ is monadic, is essentially the category of algebras for the monad $T(-) = t + (-)$, at least if $C$ admits binary coproducts. (Added later: the proof is even simpler: if $U: A \to C$ is the underlying functor for the category of algebras of an \emph{endofunctor} on $C$ (as opposed to algebras of a monad), then $U$ reflects and preserves limits; then apply this to the endofunctor $T$ above.) \end{remark} \begin{prop} \label{LimitsInSliceViaLimitsOfCoconedDiagram}\hypertarget{LimitsInSliceViaLimitsOfCoconedDiagram}{} For $\mathcal{C}$ a [[category]], $X \;\colon\; \mathcal{D} \longrightarrow \mathcal{C}$ a [[diagram]], $\mathcal{C}_{/X}$ the [[comma category]] (the over-category if $\mathcal{D}$ is the point) and $F \;\colon\; K \to \mathcal{C}_{/X}$ a [[diagram]] in the [[comma category]], then the [[limit]] $\underset{\leftarrow}{\lim} F$ in $\mathcal{C}_{/X}$ coincides with the limit $\underset{\leftarrow}{\lim} F/X$ in $\mathcal{C}$. \end{prop} For a proof see at [[(∞,1)-limit]] \emph{\href{limit+in+a+quasi-category#InOvercategories}{here}}. \hypertarget{initial_and_terminal_objects}{}\subsubsection*{{Initial and terminal objects}}\label{initial_and_terminal_objects} As a special case of the above discussion of limits and colimits in a slice $\mathcal{C}_{/X}$ we obtain the following statement, which of course is also immediately checked explicitly. \begin{cor} \label{}\hypertarget{}{} \begin{itemize}% \item If $\mathcal{C}$ has an initial object $\emptyset$, then $\mathcal{C}_{/X}$ has an [[initial object]], given by $\langle \emptyset \to X\rangle$. \item The [[terminal object]] of $\mathcal{C}_{/X}$ is $\mathrm{id}_X$. \end{itemize} \end{cor} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item \textbf{over-category} \begin{itemize}% \item [[enriched over category]] \item [[under category]] \item [[over topos]] \end{itemize} \item [[slice 2-category]] \item [[over (∞,1)-category]], \begin{itemize}% \item [[model structure on an over category]] \item [[over-(∞,1)-topos]] \end{itemize} \end{itemize} [[!redirects overcategory]] [[!redirects over categories]] [[!redirects over-category]] [[!redirects over-categories]] [[!redirects overcategories]] [[!redirects slice category]] [[!redirects slice categories]] \end{document}