\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{over-(infinity,1)-category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_over1categories}{Relation to over-1-categories}\dotfill \pageref*{relation_to_over1categories} \linebreak \noindent\hyperlink{functoriality_of_the_slicing}{Functoriality of the slicing}\dotfill \pageref*{functoriality_of_the_slicing} \linebreak \noindent\hyperlink{HamSpacesInASlice}{Hom-spaces in a slice}\dotfill \pageref*{HamSpacesInASlice} \linebreak \noindent\hyperlink{LimitsAndColimits}{Limits and Colimits in a slice}\dotfill \pageref*{LimitsAndColimits} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $C$ an [[(∞,1)-category]] and $X \in C$ an [[object]], the \emph{over-$(\infty,1)$-category} or \emph{slice $(\infty,1)$-category} $C_{/X}$ is the $(\infty,1)$-category whose [[objects]] are [[morphism]] $p : Y \to X$ in $C$, whose morphisms $\eta : p_1 \to p_2$ are [[2-morphisms]] in $C$ of the form \begin{displaymath} \itexarray{ Y_1 &&\stackrel{f}{\to}&& Y_2 \\ & {}_{\mathllap{p_1}}\searrow &\swArrow_{\simeq}^{\eta}& \swarrow_{\mathrlap{p_2}} \\ && X } \,, \end{displaymath} hence 1-morphisms $f$ as indicated together with a [[homotopy]] $\eta \colon p_2 \circ f \stackrel{\simeq}{\to} p_1$; and generally whose [[n-morphisms]] are [[diagrams]] \begin{displaymath} \Delta[n+1] = \Delta[n] \star \Delta[0]\to C \end{displaymath} in $C$ of the shape of the cocone under the $n$-[[simplex]] that take the tip of the [[cocone]] to the object $X$. This is the generalization of the notion of [[over-category]] in ordinary [[category theory]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} We give the definition in terms of the model of [[(∞,1)-categories]] in terms of [[quasi-categories]]. Recall from [[join of quasi-categories]] that there are two different but quasi-categorically equivalent definitions of \emph{join}, denoted $\star$ and $\diamondsuit$. Accordingly we have the following two different but quasi-categoricaly equivalent definitions of over/under quasi-categories. \begin{prop} \label{}\hypertarget{}{} Let $C$ be a [[quasi-category]]. let $K$ be any [[simplicial set]] and let \begin{displaymath} F : K \to C \end{displaymath} be an [[(∞,1)-functor]] -- a morphism of simplicial sets. \begin{enumerate}% \item The \textbf{under-quasi-category} $C_{F/}$ is the simplicial set characterized by the property that for any other simplicial set $S$ there is a natural bijection of hom-sets \begin{displaymath} Hom_{sSet}(S, C_{F/}) \cong (Hom_{(K\downarrow SSet)})(i_{K,S} , F) \,, \end{displaymath} where $i_{K,S} : K \to K \star S$ is the canonical inclusion of $K$ into its [[join of simplicial sets]] with $S$. Similarly, the \textbf{over quasi-category} over $F$ is the simplicial set characterized by the property that \begin{displaymath} Hom_{sSet}(S, C_{/F}) \simeq Hom_{(K\downarrow SSet)}( j_{K,S} , F ) \end{displaymath} naturally in $S$, where $j_{K,S}$ is the canonical inclusion map $K\to S\star K$. \item The functor \begin{displaymath} sSet \to sSet_{K/} \end{displaymath} \begin{displaymath} S \mapsto K \diamondsuit S \end{displaymath} with $\diamondsuit$ denoting the other definition of [[join of quasi-categories]] (as described there) has a [[right adjoint]] \begin{displaymath} sSet_{K/} \to sSet \end{displaymath} \begin{displaymath} (F : K \to C) \mapsto C^{F/} \end{displaymath} and its image $C^{F/}$ is another definition of the quasi-category under $F$. \end{enumerate} \end{prop} The first definition in terms of the the mapping property is due to [[Andre Joyal]]. Together with the discussion of the concrete realization it appears as [[Higher Topos Theory|HTT, prop 1.2.9.2]]. The second definition appears in [[Higher Topos Theory|HTT]] above prop. 4.2.1.5. \begin{prop} \label{}\hypertarget{}{} The simplicial sets $C_{/F}$ and $C_{F/}$ are indeed themselves again [[quasi-categories]]. \end{prop} This appears as [[Higher Topos Theory|HTT, prop. 1.2.9.3]] \begin{prop} \label{}\hypertarget{}{} The two definitions yield equivalent results in that the canonical morphism \begin{displaymath} C_{/F} \to C^{/F} \,. \end{displaymath} is an equivalence of quasi-categories. \end{prop} This is [[Higher Topos Theory|HTT, prop. 4.2.1.5]] From the formula \begin{displaymath} (C_{/F})_n = (Hom_{sSet})_F(\Delta^n \star K , C) \end{displaymath} we see that \begin{itemize}% \item an object in the over quasi-category $C_{/F}$ is a \textbf{[[cone]]} over $F$;. For instance if $K = \Delta[1]$ then an object in $C_{/F}$ is a 2-cell \begin{displaymath} \itexarray{ && v \\ & \swarrow &\swArrow& \searrow \\ F(0) &&\to&& F(1) } \end{displaymath} in $C$. \item a morphism in $C_{/F}$ is a morphism of cones, \item etc:. \end{itemize} So we may think of the overcategory $C_{/F}$ as the \textbf{quasi-category of cones over $F$}. Accordingly we have that \begin{itemize}% \item the [[terminal object in a quasi-category|terminal object]] in $C_{/F}$ is (if it exists) the [[limit in a quasi-category|limit in]] $C$ over $F$; \item the [[terminal object in a quasi-category|initial object]] in $C_{F/}$ is (if it exists) the [[limit in a quasi-category|colimit of]] $F$ in $C$. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_over1categories}{}\subsubsection*{{Relation to over-1-categories}}\label{relation_to_over1categories} \begin{prop} \label{}\hypertarget{}{} For $C = N(\mathcal{C})$ (the [[nerve]] of) an ordinary [[category]] $\mathcal{C}$ and $K = *$, this construction coincides with the ordinary notion of [[overcategory]] $\mathcal{C}/F$ in that there is a canonical [[isomorphism]] of simplicial sets \begin{displaymath} N(\mathcal{C}/F) \simeq N(\mathcal{C})/F \,. \end{displaymath} \end{prop} This appears as [[Higher Topos Theory|HTT, remark 1.2.9.6]]. \hypertarget{functoriality_of_the_slicing}{}\subsubsection*{{Functoriality of the slicing}}\label{functoriality_of_the_slicing} \begin{prop} \label{}\hypertarget{}{} If $q : C \to D$ is a [[model structure for quasi-categories|categorical equivalence]] then so is the induced morphism $C_{/F} \to D_{/q F}$. \end{prop} This appears as [[Higher Topos Theory|HTT, prop 1.2.9.3]]. \begin{prop} \label{}\hypertarget{}{} For $C$ a [[quasi-category]] and $p : X \to C$ any morphism of simplicial sets, the canonical morphisms \begin{displaymath} C_{p/} \to C \end{displaymath} and \begin{displaymath} C^{p/} \to C \end{displaymath} are both [[left Kan fibrations]]. \end{prop} This is a special case of [[Higher Topos Theory|HTT, prop 2.1.2.1]] and [[Higher Topos Theory|prop. 4.2.1.6]]. \begin{prop} \label{FinalFunctorsInduceEquivalentSlices}\hypertarget{FinalFunctorsInduceEquivalentSlices}{} Let $v \colon K \to \tilde K$ be a map of small [[(∞,1)-categories]], $\mathcal{C}$ an $(\infty,1)$-category, $\tilde{p}: \tilde{K} \to \mathcal{C}$ and $p = \tilde{p}v$. The induced [[(∞,1)-functor]] between slice $(\infty,1)$-categories \begin{displaymath} \mathcal{C}_{/ \tilde{p}} \to \mathcal{C}_{/p} \end{displaymath} is an [[equivalence of (∞,1)-categories]] for each diagram $\tilde{p}$ precisely if $v$ is an op-[[final (∞,1)-functor]] (hence if $v^{op}$ is final). \end{prop} This is (\hyperlink{Lurie}{Lurie, prop. 4.1.1.8}). \hypertarget{HamSpacesInASlice}{}\subsubsection*{{Hom-spaces in a slice}}\label{HamSpacesInASlice} \begin{prop} \label{}\hypertarget{}{} For $C$ an [[(∞,1)-category]] and $X \in C$ an [[object]] in $C$ and $f : A \to X$ and $g : B \to X$ two objects in $C/X$, the [[derived hom-space|hom-∞-groupoid]] $C/X(f,g)$ is equivalent to the [[homotopy fiber]] of $C(A,B) \stackrel{g_*}{\to} C(A,X)$ over the morphism $f$: we have an [[(∞,1)-pullback]] [[diagram]] \begin{displaymath} \itexarray{ C/X(f,g) & \longrightarrow & C(A,B) \\ \downarrow && \downarrow^{\mathrlap{g_*}} \\ {*} & \stackrel{\vdash f}{\longrightarrow} & C(A,X) } \,. \end{displaymath} \end{prop} This is [[Higher Topos Theory|HTT, prop. 5.5.5.12]]. \hypertarget{LimitsAndColimits}{}\subsubsection*{{Limits and Colimits in a slice}}\label{LimitsAndColimits} The forgetful functor $\mathcal{C}_{/X} \to \mathcal{C}$ out of a slice ([[dependent sum]]) [[reflected limit|reflects]] [[(∞,1)-colimits]]: \begin{prop} \label{}\hypertarget{}{} Let $f \colon K \to \mathcal{C}_{/X}$ be a [[diagram]] in the slice of an [[(∞,1)-category]] $\mathcal{C}$ over an object $X \in \mathcal{C}$. Then if the composite $K \stackrel{f}{\to} \mathcal{C}_{/X} \to \mathcal{C}$ has an [[(∞,1)-colimit]], then so does $f$ itself and the projection $\mathcal{C}_{/q} \to \mathcal{C}$ takes the latter to the former. Conversely, a cocone $K \star \Delta^0 \to \mathcal{C}_{/X}$ under $f$ is an [[(∞,1)-colimit]] of $f$ precisely if the composite $K \star \Delta^0 \to \mathcal{C}_{/X} \to \mathcal{C}$ is an $(\infty,1)$-colimit of the projection of $f$. \end{prop} This appears as (\hyperlink{Lurie}{Lurie, prop. 1.2.13.8}). On the other hand [[(∞,1)-limits]] in the slice are computed as limits over the diagram with the slice-cocone adjoined: \begin{prop} \label{}\hypertarget{}{} For $\mathcal{C}$ an [[(∞,1)-category]], $X \;\colon\; \mathcal{D} \longrightarrow \mathcal{C}$ a [[diagram]], $\mathcal{C}_{/X}$ the [[comma category]] (the over-$\infty$-category if $\mathcal{D}$ is the point) and $F \;\colon\; K \to \mathcal{C}_{/X}$ a [[diagram]] in the [[comma category]], then the [[(∞,1)-limit]] $\underset{\leftarrow}{\lim} F$ in $\mathcal{C}_{/X}$ coincides with the limit $\underset{\leftarrow}{\lim} F/X$ in $\mathcal{C}$. \end{prop} For a proof see at [[(∞,1)-limit]] \emph{\href{limit+in+a+quasi-category#InOvercategories}{here}}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[arrow category]] \item [[over-category]] \begin{itemize}% \item [[slice category]] \item [[under category]] \item [[over topos]] \end{itemize} \item \textbf{over-(∞,1)-category} \begin{itemize}% \item [[model structure on an over category]] \item [[over-(∞,1)-topos]], [[etale geometric morphism]] \end{itemize} \item [[arrow (∞,1)-category]], [[arrow (∞,1)-topos]] \item [[slice 2-category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Section 1.2.9 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \end{itemize} [[!redirects over-category in quasi-categories]] [[!redirects over quasi-categories]] [[!redirects over quasicategory]] [[!redirects over-quasi-category]] [[!redirects over-quasicategory]] [[!redirects overquasicategory]] [[!redirects slice quasi-category]] [[!redirects slice quasicategory]] [[!redirects over-(∞,1)-category]] [[!redirects over-(infinity,1)-category]] [[!redirects slice infinity-category]] [[!redirects slice infinity-categories]] [[!redirects over-(∞,1)-categories]] [[!redirects over-(infinity,1)-categories]] [[!redirects under-(∞,1)-category]] [[!redirects under-(infinity,1)-category]] [[!redirects under-(∞,1)-categories]] [[!redirects under-(infinity,1)-categories]] [[!redirects over (∞,1)-category]] [[!redirects over (infinity,1)-category]] [[!redirects over (∞,1)-categories]] [[!redirects over (infinity,1)-categories]] [[!redirects over quasi-category]] [[!redirects slice-(∞,1)-category]] [[!redirects slice-(∞,1)-categories]] [[!redirects slice (∞,1)-category]] [[!redirects slice (∞,1)-categories]] [[!redirects slice (infinity,1)-category]] [[!redirects slice (infinity,1)-categories]] \end{document}