\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{over-(infinity,1)-topos} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-Topos Theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{bundles}{}\paragraph*{{Bundles}}\label{bundles} [[!include bundles - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{base_change_to_the_point}{Base change to the point}\dotfill \pageref*{base_change_to_the_point} \linebreak \noindent\hyperlink{general_base_change}{General base change}\dotfill \pageref*{general_base_change} \linebreak \noindent\hyperlink{SheavesOnBigSite}{As $(\infty,1)$-sheaves on the big $(\infty,1)$-site of an object}\dotfill \pageref*{SheavesOnBigSite} \linebreak \noindent\hyperlink{ObjectClassifier}{Object classifier}\dotfill \pageref*{ObjectClassifier} \linebreak \noindent\hyperlink{InHomotopyTypeTheory}{In homotopy type theory}\dotfill \pageref*{InHomotopyTypeTheory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $\mathbf{H}$ an [[(∞,1)-topos]] and $X \in \mathbf{H}$ any [[object]], the [[over-(∞,1)-category]] $\mathbf{H}/X$ is itself an $(\infty,1)$-topos: the \emph{over-$(\infty,1)$-topos} . If we think of $\mathbf{H}$ as a [[big topos]], then for $X \in \mathbf{H}$ we may think of $\mathbf{H}/X \in$ [[(∞,1)-topos]] as the [[little topos]]-incarnation of $X$. The [[object]]s of $\mathbf{H}/X$ we may think of as [[(∞,1)-sheaves]] on $X$. This correspondence between objects of $X$ and their little-topos incarnation is entirly natural: $\mathbf{H}$ is equivalently recovered as the [[(∞,1)-category]] whose objects are over-$(\infty,1)$-toposes $\mathbf{H}/X$ and whose morphisms are [[(∞,1)-geometric morphism]]s \emph{over} $\mathbf{H}$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{prop} \label{}\hypertarget{}{} For $\mathbf{H}$ an [[(∞,1)-topos]] and $X \in \mathbf{H}$ an [[object]] also the [[over-(∞,1)-category]] $\mathbf{H}/X$ is an $(\infty,1)$-topos. This is the \textbf{over-$(\infty,1)$-topos} of $\mathbf{H}$ over $X$. \end{prop} This is [[Higher Topos Theory|HTT, prop 6.3.5.1 1)]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{base_change_to_the_point}{}\subsubsection*{{Base change to the point}}\label{base_change_to_the_point} \begin{prop} \label{}\hypertarget{}{} There is a canonical [[(∞,1)-geometric morphism]] \begin{displaymath} \mathbf{H}/X \stackrel{\overset{X_!}{\longrightarrow}}{\stackrel{\overset{X^*}{\longleftarrow}}{\underset{X_*}{\longrightarrow}}} \mathbf{H} \end{displaymath} where the extra [[left adjoint]] $X_!$ is the obvious projection $X_! : (Y \to X) \mapsto X$, and $X_*$ is given by forming the [[(∞,1)-limit|(∞,1)-product]] with $X$. \end{prop} This is called an [[etale geometric morphism]]. See there for more details. \begin{proof} The fact that $(X_! \dashv X^*)$ follows from the universal property of the products. The fact that $X^*$ preserves [[(∞,1)-colimit]]s and hence has a further [[right adjoint]] $X_*$ by the [[adjoint (∞,1)-functor theorem]] follows from that fact that $\mathbf{H}$ has [[universal colimits]]. \end{proof} \begin{cor} \label{}\hypertarget{}{} If $\mathbf{H}$ is a [[locally ∞-connected (∞,1)-topos]] then for all $X \in \mathbf{H}$ also the over-$(\infty,1)$-topos $\mathbf{H}/X$ is locally $\infty$-connected. \end{cor} \begin{proof} The composite of [[(∞,1)-geometric morphism]]s \begin{displaymath} \mathbf{H}/X \stackrel{\overset{X_!}{\longrightarrow}}{\stackrel{\overset{X^*}{\longleftarrow}}{\underset{X_*}{\longrightarrow}}} \mathbf{H} \stackrel{\overset{\Pi_{\mathbf{H}}}{\longrightarrow}}{\stackrel{\overset{LConst_{\mathbf{H}}}{\longleftarrow}}{\underset{\Gamma_{\mathbf{H}}}{\longrightarrow}}} \infty Grpd \end{displaymath} is itself a geometric morphism. Since [[∞Grpd]] is the [[terminal object]] in [[(∞,1)Topos]] this must be the [[global section]] geometric morphism for $\mathbf{H}/X$. Since it has the extra left adjoint $\Pi \circ X_!$ it is locally $\infty$-connected. \end{proof} \begin{prop} \label{}\hypertarget{}{} Let $((\infty,1)Topos/\mathbf{H})_{et} \subset (\infty,1)Topos/\mathbf{H}$ be the full [[sub-(∞,1)-category]] on the [[etale geometric morphism]]s $\mathbf{H}/X \to \mathbf{H}$. Then there is an [[equivalence in an (∞,1)-category|equivalence]] \begin{displaymath} ((\infty,1)Topos/\mathbf{H})_{et} \simeq \mathbf{H} \end{displaymath} \end{prop} See [[etale geometric morphism]] for more details. \hypertarget{general_base_change}{}\subsubsection*{{General base change}}\label{general_base_change} See [[base change geometric morphism]]. \hypertarget{SheavesOnBigSite}{}\subsubsection*{{As $(\infty,1)$-sheaves on the big $(\infty,1)$-site of an object}}\label{SheavesOnBigSite} We spell out how $\mathbf{H}/X$ is the [[(∞,1)-category of (∞,1)-sheaves]] over the [[big site]] of $X$. \begin{prop} \label{SlicingCommutesWithPassingToPresheaves}\hypertarget{SlicingCommutesWithPassingToPresheaves}{} \textbf{(forming overcategories commutes with passing to presheaves)} Let $C$ be a [[small (∞,1)-category]] and $X : K \to C$ a [[diagram]]. Write $C_{/X}$ and $PSh(C)/_{X}$ for the corresponding [[over (∞,1)-categories]], where -- notationally implicitly -- we use the [[(∞,1)-Yoneda embedding]] $C \to PSh(C)$. Then we have an [[equivalence of (∞,1)-categories]] \begin{displaymath} PSh(C/X) \stackrel{\simeq}{\longrightarrow} PSh(C)/X \,. \end{displaymath} \end{prop} This appears as [[Higher Topos Theory|HTT, 5.1.6.12]]. For more on this see [[(∞,1)-category of (∞,1)-presheaves]]. \begin{remark} \label{}\hypertarget{}{} Here we may think of $C/X$ as the [[big site]] of the object $c \in PSh(C)$, hence of $PSh(C/X)$ as presheaves on $X$. \end{remark} \begin{prop} \label{CommaSiteForSliceTopos}\hypertarget{CommaSiteForSliceTopos}{} Let $C$ be equipped with a [[subcanonical coverage]], let $X \in C$ and regard $C/X$ as an [[(∞,1)-site]] with the [[big site]]-[[coverage]]. Then we have \begin{displaymath} Sh(C/X) \simeq Sh(C)/X \,. \end{displaymath} \end{prop} \begin{proof} By the discussion of [[adjoint (∞,1)-functor]]s we have that the adjunction \begin{displaymath} (F \dashv i) : Sh(C) \stackrel{\overset{F}{\leftarrow}}{\hookrightarrow} PSh(C) \end{displaymath} passes to an adjunction on the [[over-(∞,1)-categories]] \begin{displaymath} (F/X \dashv i/X) : Sh(C)/X \stackrel{\overset{F}{\leftarrow}}{\hookrightarrow} PSh(C)/X \,, \end{displaymath} (where we are using that $F i X \simeq X$ by the assumption that the coverage is subcanonical, so that the representable $X$ is a [[(∞,1)-sheaf]]), such that $i/X$ is still a [[full and faithful (∞,1)-functor]] (where we are using that the unit $X \to F i X$ is an equivalence, since $X$ is a sheaf). Since moreover the [[(∞,1)-limits]] in $Sh(C)/X$ are computed as limits in $Sh(C)$ over diagrams with a bottom element adjoined (as discussed at ) it follows that with $F$ preserving all finite limits, so does $F/X$. In summary we have that $(F/X \dashv i/X)$ is a [[reflective sub-(∞,1)-category]] of $PSh(C/X)$ hence is the [[(∞,1)-category of (∞,1)-sheaves]] on the category $C/X$ for \emph{some} [[(∞,1)-site]]-structure. But since $F/X$ inverts precisely those morphisms that are inverted by $F$ under the projection $PSh(C)/X \to PSh(C)$, it follows that this is the [[big site]] structure on $C/X$ (this is the defining property of the big site). \end{proof} Specifically for the $(\infty,1)$-topos $\mathbf{H} =$ [[∞Grpd]] we also have the following characterization. \begin{prop} \label{}\hypertarget{}{} For $\mathbf{H} =$ [[∞Grpd]] we have that for $X \in \infty Grp$ any [[∞-groupoid]] the corresponding over-$(\infty,1)$-topos is equivalent to the [[(∞,1)-category of (∞,1)-presheaves]] on $X$: \begin{displaymath} \infty Grpd/X \simeq PSh(X) \simeq [X, \infty Grpd] \,. \end{displaymath} \end{prop} \begin{proof} This is a special case of the [[(∞,1)-Grothendieck construction]]. See the section . \end{proof} The following proposotion asserts that the over-$(\infty,1)$-topos over an $n$-[[truncated]] object indeed behaves like a generalized [[n-groupoid]] \begin{prop} \label{}\hypertarget{}{} For $n \in \mathbb{N}$ and $\mathcal{X}$ an [[n-localic (∞,1)-topos]], then the over-$(\infty,1)$-topos $\mathcal{X}/U$ is $n$-localic precisely if the object $U$ is $n$-[[truncated]]. \end{prop} This is (\hyperlink{StrSp}{StrSp, lemma 2.3.16}). \hypertarget{ObjectClassifier}{}\subsubsection*{{Object classifier}}\label{ObjectClassifier} If $Obj_\kappa \in \mathbf{H}$ is an [[object classifier]] for $\kappa$-[[small objects]], then the [[projection]] $Obj_\Kappa \times X \to X$ regarded as an object in the slice is a $\kappa$-small object classifier in $\mathbf{H}_{/X}$. \hypertarget{InHomotopyTypeTheory}{}\subsubsection*{{In homotopy type theory}}\label{InHomotopyTypeTheory} If a [[homotopy type theory]] is the [[internal language]] of $\mathbf{H}$, then then theory in [[context]] $x : X \vdash \cdots$ is the internal language of $\mathbf{H}_{/X}$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[arrow category]] \item [[over-category]] \begin{itemize}% \item [[slice category]] \item [[under category]] \item [[over topos]] \end{itemize} \item [[over (∞,1)-category]], \begin{itemize}% \item [[model structure on an over category]] \item \textbf{over-(∞,1)-topos} \end{itemize} \item [[arrow (∞,1)-category]], [[arrow (∞,1)-topos]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The general notion is discussed in section 6.3.5 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} \end{itemize} Some related remarks are in \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Structured Spaces]]} \end{itemize} [[!redirects over-(∞,1)-topos]] [[!redirects over-(∞,1)-toposes]] [[!redirects over-(∞,1)-topoi]] [[!redirects over-(infinity,1)-toposes]] [[!redirects over-(infinity,1)-topoi]] [[!redirects slice-(∞,1)-topos]] [[!redirects slice (∞,1)-topos]] [[!redirects slice-(infinity,1)-topos]] [[!redirects slice (infinity,1)-topos]] [[!redirects slice-(∞,1)-toposes]] [[!redirects slice (∞,1)-toposes]] [[!redirects slice-(infinity,1)-toposes]] [[!redirects slice (infinity,1)-toposes]] [[!redirects slice homotopy-topos]] [[!redirects slice homotopy-toposes]] [[!redirects slice homotopy-topoi]] \end{document}