\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{over-topos} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{bundles}{}\paragraph*{{Bundles}}\label{bundles} [[!include bundles - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition / Existence}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{EtaleGeometricMorphism}{\'E{}tale geometric morphism}\dotfill \pageref*{EtaleGeometricMorphism} \linebreak \noindent\hyperlink{PresheafOverTopos}{In terms of sheaves on a slice site}\dotfill \pageref*{PresheafOverTopos} \linebreak \noindent\hyperlink{GeometricMorphismBySlicing}{Geometric morphisms by slicing}\dotfill \pageref*{GeometricMorphismBySlicing} \linebreak \noindent\hyperlink{Points}{Topos points}\dotfill \pageref*{Points} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $\mathcal{T}$ a [[topos]] and $X \in \mathcal{T}$ any [[object]] the [[over category]] $\mathcal{T}/X$ -- the \textbf{slice topos} or \textbf{over-topos} -- is itself a topos: the ``big [[little topos]]'' incarnation of $X$. This fact is sometimes called the ``Fundamental Theorem of Topos Theory''. More generally, given a [[fibred product]]-preserving functor $u : E \to F$ between [[toposes]], the [[comma category]] $(id_F/u)$ is again a [[topos]], called the [[Artin gluing]]. \hypertarget{Definition}{}\subsection*{{Definition / Existence}}\label{Definition} \begin{prop} \label{}\hypertarget{}{} For $\mathcal{T}$ a [[topos]] and $X \in \mathcal{T}$ any [[object]], the [[slice category]] $\mathcal{T}{/X}$ is itself again a [[topos]]. \end{prop} A proof is spelled out for instance in \hyperlink{MacLaneMoerdijk}{MacLane-Moerdijk, IV.7 theorem 1}. In particular we have \begin{prop} \label{}\hypertarget{}{} If $\Omega \in \mathcal{T}$ is the [[subobject classifier]] in $\mathcal{T}$, then the [[projection]] $\Omega \times X \to X$ regarded as an object in the slice over $X$ is the subobject classifier of $\mathcal{T}{/X}$. \end{prop} \begin{prop} \label{}\hypertarget{}{} The [[power object]] of a map $f: A \to X$ is given by the equalizer of the maps $p, t$: \begin{displaymath} \itexarray{ P_X f && \dashrightarrow && P A \times X && \underoverset{t}{p}{\rightrightarrows} && P A \\ &&&&\downarrow^{\mathrlap{1 \times \{\cdot\}_X}} &&&& \uparrow^{\mathrlap{\wedge}} \\ &&&& P A \times P X && \underset{1 \times P f}{\rightarrow} && P A \times P A }, \end{displaymath} where $p$ is the projection map and $t$ is the composition $\wedge \circ (1 \times P f) \circ (1 \times \{\cdot\}_X)$. In the internal language, this says \begin{displaymath} P_X f = \{(B, x) \in P A \times X: (\forall b \in B) f(b) = x\}. \end{displaymath} The map to $X$ is given by projection onto the second factor. \end{prop} \begin{remark} \label{AsExampleOfToposOfCoalgebrasOverAComonad}\hypertarget{AsExampleOfToposOfCoalgebrasOverAComonad}{} The fact that the slice $\mathcal{T}/X$ is a topos, and particularly the construction of power objects above, can be deduced from a more general result: that the category of coalgebras of a pullback-preserving comonad $G: \mathcal{T} \to \mathcal{T}$ is a topos. See at \emph{[[topos of coalgebras over a comonad]]}. In the case of a slice topos, the comonad would be $X \times -: \mathcal{T} \to \mathcal{T}$ (with comultiplication induced by the diagonal $X \to X \times X$, and counit induced by the projection $!: X \to 1$). This result also subsumes the weaker result where $G$ is assumed to preserve finite limits. See the [[Elephant]], Section A, Remark 4.2.3. A proof of a still more general result may be found \href{https://ncatlab.org/toddtrimble/published/Three+topos+theorems+in+one}{here}. \end{remark} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{EtaleGeometricMorphism}{}\subsubsection*{{\'E{}tale geometric morphism}}\label{EtaleGeometricMorphism} \begin{prop} \label{}\hypertarget{}{} For $\mathcal{T}$ a [[Grothendieck topos]] and $X \in \mathcal{T}$ any object, the canonical projection functor $X_! : \mathcal{T}/X \to \mathcal{T}$ is part of an [[essential geometric morphism]] \begin{displaymath} (X_! \dashv X^* \dashv X_*) : \mathcal{T}/X \stackrel{\overset{X_!}{\to}}{\stackrel{\overset{X^*}{\leftarrow}}{\underset{X_*}{\to}}} \mathcal{T} \,. \end{displaymath} \end{prop} \begin{proof} The functor $X^*$ is given by taking the [[product]] with $X$: \begin{displaymath} X^* : K \mapsto (p_2 : K \times X \to X) \,, \end{displaymath} since [[commuting diagram]]s \begin{displaymath} \itexarray{ A &&\to&& K \times X \\ & \searrow && \swarrow_{\mathrlap{p_2}} \\ && X } \end{displaymath} are evidently uniquely specified by their components $A \to K$. Moreover, since in the Grothendieck topos $\mathcal{T}$ we have [[universal colimits]], it follows that $(-) \times X$ preserves all [[colimit]]s. Therefore by the [[adjoint functor theorem]] a further [[right adjoint]] $X_*$ exists. \end{proof} \begin{remark} \label{}\hypertarget{}{} One also says that $X_!$ is the \emph{[[dependent sum]]} operation and $X_*$ the [[dependent product]] operation. As discussed there, this can be seen to compute spaces of [[section]]s of [[bundles]] over $X$. Moreover, in terms of the [[internal logic]] of $\mathcal{T}$ the functor $X_!$ is the \emph{[[existential quantifier]]} $\exists$ and $X_*$ is the \emph{[[universal quantifier]]} $\forall$. \end{remark} \begin{defn} \label{}\hypertarget{}{} A [[geometric morphism]] $\mathcal{E} \to \mathcal{T}$ equivalent to one of the form $(X_! \dashv X^* \dashv X_*)$ is called an \textbf{[[etale geometric morphism]]}. \end{defn} More generally: \begin{prop} \label{GeneralEtaleGeometricMorphism}\hypertarget{GeneralEtaleGeometricMorphism}{} For $\mathcal{E}$ a [[Grothendieck topos]] and $f : X \to Y$ a [[morphism]] in $\mathcal{E}$, there is an induced [[essential geometric morphism]] \begin{displaymath} (f_! \dashv f^* \dashv f_*) : \mathcal{E}/X \stackrel{\overset{f_!}{\to}}{\stackrel{\overset{f^*}{\leftarrow}}{\underset{f_*}{\to}}} \mathcal{E}/Y \,, \end{displaymath} where $f_!$ is given by postcomposition with $f$ and $f^*$ by [[pullback]] along $X$. \end{prop} \begin{proof} By [[universal colimit]]s in $\mathcal{E}$ the [[pullback]] functor $f^*$ preserves both [[limit]]s and [[colimit]]s. By the [[adjoint functor theorem]] and using that the over-toposes are [[locally presentable categories]], this already implies that it has a [[left adjoint]] and a [[right adjoint]]. That the left adjoint is given by postcomposition with $f$ follows from the universality of the pullback: for $(a : A \to X)$ in $\mathcal{E}/X$ and $(b : B \to Y)$ in $\mathcal{E}/Y$ we have unique factorizations \begin{displaymath} \itexarray{ A &\to& X \times_X B &\to& B \\ &{}_{\mathllap{a}}\searrow& \downarrow^{\mathrlap{f^*(b)}} && \downarrow^{\mathrlap{b}} \\ && X &\stackrel{f}{\to}& Y } \end{displaymath} in $\mathcal{E}$, hence an isomorphism \begin{displaymath} \mathcal{E}/Y(f_*(A \to X), (B \to Y)) \simeq \mathcal{E}/X((A \to X), f^*(B \to Y)) \,. \end{displaymath} \end{proof} \hypertarget{PresheafOverTopos}{}\subsubsection*{{In terms of sheaves on a slice site}}\label{PresheafOverTopos} Generally, for $C$ a [[site]], $c \in C$ an [[object]], and $L(y(c)) \in Sh(C)$ the [[sheafification]] of its image under the [[Yoneda embedding]], there is an [[equivalence of categories]] \begin{displaymath} Sh\big( C /c \big) \;\simeq\; Sh(C)/(L(y(c))) \end{displaymath} between the [[category of sheaves]] on the [[slice category]] $C/c$ with its evident induced [[structure]] of a [[site]], and the [[slice topos]] of the category of sheaves on $C$, sliced over $L(y(c))$. This is for instance in Verdier's exposé III.5 prop.5.4 (\hyperlink{SGA4}{SGA4}, p.295). $\backslash$linebreak We now discuss this in more detail for the special case of over-[[presheaf toposes]]. Let $C$ be a [[small category]], $c$ an [[object]] of $C$ and let $C/c$ be the [[over category]] of $C$ over $c$. Write \begin{itemize}% \item $PSh(C/c) = [(C/c)^{op}, Set]$ for the [[category of presheaves]] on $C/c$ \item and write $PSh(C)/Y(c)$ for the [[over category]] of [[presheaf|presheaves]] on $C$ over the presheaf $Y(c)$, where $Y : C \to PSh(C)$ is the [[Yoneda embedding]]. \end{itemize} \begin{prop} \label{representable_case}\hypertarget{representable_case}{} There is an [[equivalence of categories]] \begin{displaymath} e : PSh(C/c) \stackrel{\simeq}{\to} PSh(C)/Y(c) \,. \end{displaymath} \end{prop} \begin{proof} The functor $e$ takes $F \in PSh(C/c)$ to the presheaf $F' : d \mapsto \sqcup_{f \in C(d,c)} F(f)$ which is equipped with the natural transformation $\eta : F' \to Y(c)$ with component map \begin{displaymath} \eta_d : \sqcup_{f \in C(d,c)} F(f) \to C(d,c) : ((f \in C(d,c), \theta \in F(f)) \mapsto f \,. \end{displaymath} A weak inverse of $e$ is given by the functor \begin{displaymath} \bar e : PSh(C)/Y(c) \to PSh(C/c) \end{displaymath} which sends $\eta : F' \to Y(c)$ to $F \in PSh(C/c)$ given by \begin{displaymath} F : (f : d \to c) \mapsto F'(d)|_c \,, \end{displaymath} where $F'(d)|_c$ is the [[pullback]] \begin{displaymath} \itexarray{ F'(d)|_c &\to& F'(d) \\ \downarrow && \downarrow^{\eta_d} \\ pt &\stackrel{f}{\to}& C(d,c) } \,. \end{displaymath} \end{proof} \begin{lemma} \label{}\hypertarget{}{} Suppose the presheaf $F \in PSh(C/c)$ does not actually depend on the morphisms to $c$, i.e. suppose that it factors through the forgetful functor from the [[over category]] to $C$: \begin{displaymath} F : (C/c)^{op} \to C^{op} \to Set \,. \end{displaymath} Then $F'(d) = \sqcup_{f \in C(d,c)} F(f) = \sqcup_{f \in C(d,c)} F(d) \simeq C(d,c) \times F(d)$ and hence $F ' = Y(c) \times F$ with respect to the [[closed monoidal structure on presheaves]]. \end{lemma} \begin{lemma} \label{}\hypertarget{}{} Consider $\int_C Y(c)$ , the [[category of elements]] of $Y(c):C^{op}\to Set$. This has objects $(d_1,p_1)$ with $p_1\in Y(c)(d_1)$, hence $p_1$ is just an arrow $d_1\to c$ in $C$. A map from $(d_1, p_1)$ to $(d_2, p_2)$ is just a map $u:d_1\to d_2$ such that $p_2\circ u =p_1$ but this is just a morphism from $p_1$ to $p_2$ in $C/c$. Hence, the above proposition \ref{representable_case} can be rephrased as $PSh(\int_C Y(c))\simeq PSh(C)/Y(c)$ which is an instance of the following formula: \end{lemma} \begin{prop} \label{}\hypertarget{}{} Let $P:C^{op}\to Set$ be a presheaf. Then there is an [[equivalence of categories]] \begin{displaymath} PSh(\int_C P) \simeq PSh(C)/P \,. \end{displaymath} \end{prop} On objects this takes $F : (\int_C P)^{op} \to Set$ to \begin{displaymath} i(F)(A \in C) = \{ (p,a) | p \in P(A), a \in F(A,p) \} = \Sigma_{p \in P(A)} F(A,p) \end{displaymath} with obvious projection to $P$. The inverse takes $f : Q \to P$ to \begin{displaymath} i^{-1}(f)(A, p \in P(A)) = f_A^{-1}(p)\;. \end{displaymath} For a proof see \hyperlink{KS06}{Kashiwara-Schapira (2006, Lemma 1.4.12, p. 26)}. For a more general statement involving slices of Grothendieck toposes see \hyperlink{MacLaneMoerdijk}{Mac Lane-Moerdijk (1994, p.157)}. In particular, this equivalence shows that \emph{slices of presheaf toposes are presheaf toposes}. \hypertarget{GeometricMorphismBySlicing}{}\subsubsection*{{Geometric morphisms by slicing}}\label{GeometricMorphismBySlicing} \begin{prop} \label{SliceGeometricMorphism}\hypertarget{SliceGeometricMorphism}{} For $(f^* \dashv f_*) : \mathcal{T} \to \mathcal{E}$ a [[geometric morphism]] of toposes and $X \in \mathcal{E}$ any [[object]], there is an induced geometric morphism between the slice-toposes \begin{displaymath} (f^*/X \dashv f_*) : \mathcal{T}/f^*X \to \mathcal{E}/X \,, \end{displaymath} where the [[inverse image]] $f^*/X$ is the evident application of $f^*$ to diagrams in $\mathcal{E}$. \end{prop} \begin{proof} The slice adjunction $(f^*/X \dashv f_*/X)$ is discussed : the [[left adjoint]] $f^*/X$ is the evident induced functor. Since $\mathcal{E}/X$ are computed as limits in $\mathcal{E}$ of diagrams with a single bottom element $X$ adjoined, $f^*/X$ preserves finite limits, since $f^*$ does, so that $(f^*/X \dashv f_*/X)$ is indeed a [[geometric morphism]]. \end{proof} \hypertarget{Points}{}\subsubsection*{{Topos points}}\label{Points} We discuss [[point of a topos|topos points]] of over-toposes. \begin{prop} \label{}\hypertarget{}{} Let $\mathcal{E}$ be a [[topos]], $X \in \mathcal{E}$ an [[object]] and \begin{displaymath} (e^* \dashv e_*) : Set \to \mathcal{E} \end{displaymath} a [[point of a topos|point]] of $\mathcal{E}$. Then for every element $x \in e^*(X)$ there is a point of the slice topos $\mathcal{E}/X$ given by the composite \begin{displaymath} (e,x) : Set \stackrel{\overset{x^*}{\leftarrow}}{\underset{x_*}{\to}} Set/e^*(X) \stackrel{\overset{e^*/X}{\leftarrow}}{\underset{e_*/X}{\to}} \mathcal{E}/X \,. \end{displaymath} \end{prop} Here $(e^*/X \dashv e_*/X)$ is the slice geometric morphism of $e$ over $X$ discussed \href{SliceGeometricMorphism}{above} and $(x^* \dashv x_*)$ is the \'e{}tale geometric morphism discussed \href{GeneralEtaleGeometricMorphism}{above} induced from the morphism $* \stackrel{x}{\to} e^*(X)$. Hence the [[inverse image]] of $(e,x)$ sends $A \to X$ to the [[fiber]] of $e^*(A) \to e^*(X)$ over $x$. \begin{prop} \label{}\hypertarget{}{} If $\mathcal{E}$ has [[point of a topos|enough point]]s then so does the slice topos $\mathcal{E}/X$ for every $X \in \mathcal{E}$. \end{prop} \begin{proof} That $\mathcal{E}$ has enough points means that a morphism $f : A \to B$ in $\mathcal{E}$ is an [[isomorphism]] precisely if for every [[point of a topos|point]] $e : Set \to \mathcal{E}$ the function $e^*(f) : e^*(A) \to e^*(B)$ is an isomorphism. A morphism in the slice topos, given by a diagram \begin{displaymath} \itexarray{ A &&\stackrel{f}{\to}&& B \\ & \searrow && \swarrow \\ && X } \end{displaymath} in $\mathcal{E}$ is an isomorphism precisely if $f$ is. By the above observation we have that under the [[inverse image]]s of the slice topos points $(e,x \in e^*(X))$ this maps to the fibers of \begin{displaymath} \itexarray{ e^*(A) &&\stackrel{e^*(f)}{\to}&& e^*(B) \\ & \searrow && \swarrow \\ && e^*(X) } \end{displaymath} over all points $* \stackrel{x}{\to} e^*(X)$. Since in [[Set]] every object $S$ is a [[coproduct]] of the point indexed over $S$, $S \simeq \coprod_S *$ and using [[universal colimits]] in $S$, we have that if $x^* e^*(f)$ is an isomorphism for all $x \in e^*(X)$ then $e^*(f)$ was already an isomorphism. The claim then follows with the assumption that $\mathcal{E}$ has enough points. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[over-category]] \begin{itemize}% \item [[slice category]] \item [[under category]] \item \textbf{over-topos} \item [[Artin gluing]] \end{itemize} \item [[over (∞,1)-category]], \begin{itemize}% \item [[model structure on an over category]] \item [[over-(∞,1)-topos]] \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Michael Artin]], [[Alexander Grothendieck]], [[Jean-Louis Verdier]], \emph{Théorie des Topos et Cohomologie Etale des Schémas ([[SGA4]])}, Springer \textbf{LNM} vol.269 (1972). (In particular, exposé III.5 and exposé IV.5 on the ``induced topos'' - \emph{topos induit} = slice topos) \item [[Masaki Kashiwara]], [[Pierre Schapira]], \emph{Categories and Sheaves} , Springer Heidelberg 2006. \item [[Saunders Mac Lane]], [[Ieke Moerdijk]], \emph{[[Sheaves in Geometry and Logic]]} , Springer Heidelberg 1994. (Especially section IV.7) \end{itemize} [[!redirects over topos]] [[!redirects over toposes]] [[!redirects over-toposes]] [[!redirects over topoi]] [[!redirects over-topoi]] [[!redirects slice topos]] [[!redirects slice toposes]] [[!redirects slice topoi]] \end{document}