\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{overt space} \hypertarget{overt_spaces}{}\section*{{Overt spaces}}\label{overt_spaces} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{motivation}{Motivation}\dotfill \pageref*{motivation} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{overt_locales}{Overt locales}\dotfill \pageref*{overt_locales} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \noindent\hyperlink{in_synthetic_topology}{In synthetic topology}\dotfill \pageref*{in_synthetic_topology} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} An \emph{overt} space is a space that satisfies a condition [[de Morgan duality|logically dual]] to that satisfied by a [[compact space]]. An overt space is also called \emph{open} (in French, there is only one word, `ouvert'). \hypertarget{motivation}{}\subsection*{{Motivation}}\label{motivation} Recall that a [[topological space]] $X$ is \emph{compact} if and only if, for every other space $Y$ and any open subspace $U$ of $X \times Y$, the subspace \begin{displaymath} \forall_X U = \{ b\colon Y \;|\; \forall\; a\colon X,\; (a, b) \in U \} \end{displaymath} is open in $Y$. Dually, a space is \emph{overt} if and only if, for every other space $Y$ and any open subspace $U$ of $X \times Y$, the subspace \begin{displaymath} \exists_X U = \{ b\colon Y \;|\; \exists\; a\colon X,\; (a, b) \in U \} \end{displaymath} is open in $Y$. (Note that the duality here is only in the logical connectives, not within the category of spaces.) Of course, \emph{every} topological space satisfies this condition; $\exists_X U$ is the [[union]] over $a$ of the open subspaces $\{ b \;|\; (a,b) \in U \}$. However, the condition is not trivial in some frameworks, such as [[constructive mathematics|constructive]] [[locale]] theory, [[formal topology]], and [[Abstract Stone Duality]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} To remove it from dependence on points, we write the definition like this: A [[space]] (topological space, locale, etc) $X$ is \textbf{overt} (or \textbf{open}) if, given any space $Y$ and any [[open subspace]] $U$ of the [[product space]] $X \times Y$, there exists an open $\exists_X U$ in $Y$ that satisfies the [[universal property]] of [[existential quantification]]: \begin{displaymath} \exists_X U \subseteq V \;\Leftrightarrow\; U \subseteq X \times V \end{displaymath} for every open $V$ in $Y$. Note that, since we quantify over all spaces $Y$ and opens $U\subseteq X\times Y$ in this definition, whether a given space is overt may depend on precisely what `space' and `open' mean (even if $X$ is an example for both meanings). For example, if $X$ is a set with the [[discrete topology]], then it is always overt if `space' means `topological space' or `locale' with the usual meaning of `open'. On the other hand, if `space' means simply `set', but `open' refers to the synthetic notion induced by a [[dominance]], then overtness of $X$ is a nontrivial condition (and in fact, if all sets are overt in this sense then the dominance is trivial). \hypertarget{overt_locales}{}\subsection*{{Overt locales}}\label{overt_locales} In the case of [[locales]], it is sufficient to require the above definition only for the case $Y \coloneqq 1$ the [[point]] (unlike the ``dual'' case of compactness). In this case, when the map $\exists_X\colon Op(X) \to Op(1) = TV$ (the set or class of [[truth values]]) exists, it is a [[positivity predicate]] on $Op(X)$. The behavior of this predicate depends on the foundational assumptions: \begin{itemize}% \item In [[classical mathematics]], it always exists; thus classically every locale is overt. \item In impredicative [[constructive mathematics]] (such as the [[internal logic]] of a [[topos]]), the positivity predicate can be defined, but it may not satisfy the requisite univeral property of [[adjunction|adjointness]]. Thus, constructively, not every locale is overt. However, even constructively, every [[topological locale]] is overt (so a [[sober space]] is overt regardless of whether it is viewed as a topological space or as a locale). \item In constructive [[predicative mathematics]], a positivity predicate cannot be defined and so must be given as a structure on (predicative data that generate) the locale, as is done with a [[formal topology]]. Once this structure is assumed, one can then ask whether a formal topology is overt, i.e. whether the axiomatic positivity predicate satisfies the requisite adjointness. \end{itemize} In impredicative constructive mathematics, overt locales can be characterized by the \emph{positive covering lemma}: $X$ is overt iff every open $U\in O(X)$ can be covered by positive opens, and iff every covering of an open $U$ can be refined to a covering by positive elements. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item At least in impredicative constructive mathematics, the [[topological locale|locale induced by a topological space]] is overt. An open subspace $U$ is positive if and only if it is inhabited. \item At least in impredicative constructive mathematics, the [[spectrum of a commutative ring]] $A$ (defined as the locale whose frame is the frame of radical ideals) is overt if and only if any element of $A$ is nilpotent or not nilpotent. \end{itemize} \hypertarget{remarks}{}\subsection*{{Remarks}}\label{remarks} As compact spaces go with [[proper maps]], so overt spaces go with [[open maps]]. Indeed, $X$ is compact if and only if the unique map $X \to pt$ to the [[point]] is proper, while $X$ is overt if and only if the unique map $X \to pt$ is open. Similarly, if $X\to pt$ is instead [[closed map|closed]], then $X$ is [[covert space|covert]]. Note that overtness is expressed only in terms of a [[left adjoint]], whereas open maps of locales must additionally satisfy a [[Frobenius reciprocity]] condition. In the case of locale maps to the point, this latter condition is automatic. An overt space may also be called \textbf{locally $(-1)$-connected}, since this condition is the [[(0,1)-topos]]-theoretic version of the notion of [[locally connected topos]] and [[locally n-connected (n,1)-topos]]. A similar thing happens for higher local connectivity involving the Frobenius reciprocity condition, which must be imposed on general [[geometric morphisms]] to make them locally $n$-connected, but is automatic for morphisms to the point. \hypertarget{in_synthetic_topology}{}\subsection*{{In synthetic topology}}\label{in_synthetic_topology} In [[synthetic topology]], we interpret `space' to mean simply `set' (or [[type]], i.e. the basic objects of our foundational system). If the notion of `open' is specified by a [[dominance]], then there is an induced nontrivial notion of ``overt set'', defined essentially as above. For instance, the [[Rosolini dominance]] is the smallest dominance such that $\mathbb{N}$ is overt, whereas if all sets are overt then the dominance is trivial. On the other hand, if by `open' we mean an open subset \href{/nlab/show/open+subspace#SynTop}{in the sense of Penon}, then all sets are overt. \hypertarget{references}{}\subsection*{{References}}\label{references} The notion of an open [[locale]] was originally introduced by Joyal and Tierney (and developed by Johnstone in [[Stone Spaces]]): \begin{itemize}% \item [[Andre Joyal]], [[Myles Tierney]], \emph{An extension of the Galois theory of Grothendieck}, Mem. Amer. Math. Soc. 51 (1984), no. 309, vii+71 pp. \end{itemize} The term ``overt'' is due to [[Paul Taylor]]. For example, it appears in: \begin{itemize}% \item [[Paul Taylor]], \emph{A lambda calculus for real analysis}, Journal of Logic and Analysis 2(5), pp.1-115, 2010. (\href{http://www.paultaylor.eu/ASD/lamcra/}{web}) \end{itemize} Some of the history is described in the introduction to: \begin{itemize}% \item [[Bas Spitters]], \emph{Locatedness and Overt Sublocales}, Annals of Pure and Applied Logic, 162:1, October 2010, Pages 36--54. (\href{http://arxiv.org/abs/math/0703561}{arxiv}) \end{itemize} [[!redirects overt space]] [[!redirects overt spaces]] [[!redirects open space]] [[!redirects open spaces]] [[!redirects overt locale]] [[!redirects overt locales]] [[!redirects open locale]] [[!redirects open locales]] [[!redirects locally (-1)-connected space]] [[!redirects locally (-1)-connected spaces]] [[!redirects locally (-1)-connected locale]] [[!redirects locally (-1)-connected locales]] [[!redirects overt]] [[!redirects overtness]] \end{document}