\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{p-adic integer} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{formal_geometry}{}\paragraph*{{Formal geometry}}\label{formal_geometry} [[!include formal geometry -- contents]] \hypertarget{arithmetic_geometry}{}\paragraph*{{Arithmetic geometry}}\label{arithmetic_geometry} [[!include arithmetic geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{Idea}{Idea}\dotfill \pageref*{Idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{topology}{Topology}\dotfill \pageref*{topology} \linebreak \noindent\hyperlink{relation_to_profinite_completion_of_the_integers}{Relation to profinite completion of the integers}\dotfill \pageref*{relation_to_profinite_completion_of_the_integers} \linebreak \noindent\hyperlink{pontrajgin_duality_to_prfer_group}{Pontrajgin duality to Pr\"u{}fer $p$-group}\dotfill \pageref*{pontrajgin_duality_to_prfer_group} \linebreak \noindent\hyperlink{AsFormalNeighbourhoodOfPrime}{As the formal neighbourhood of a prime}\dotfill \pageref*{AsFormalNeighbourhoodOfPrime} \linebreak \noindent\hyperlink{related_notions}{Related notions}\dotfill \pageref*{related_notions} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{Idea}{}\subsection*{{Idea}}\label{Idea} For each [[prime number]] $p$ the [[ring]] of \emph{$p$-adic integers} $\mathbb{Z}_p$ is the [[formal completion]] of the ring $\mathbb{Z}$ at the [[prime ideal]] $(p)$. Geometrically this means that $\mathbb{Z}_p$ is the [[ring of functions]] on a [[formal neighbourhood]] of $p$ inside [[Spec(Z)]] (this is discussed in more detail \hyperlink{AsFormalNeighbourhoodOfPrime}{below}). Algebraically it means that the elements in $\mathbb{Z}_p$ look like [[formal power series]] where the formal variable is the prime number $p$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} For any [[prime number]] $p$, the [[ring]] of $p$-\textbf{adic integers} $\mathbb{Z}_p$ (which, to avoid possible confusion with the ring $\mathbb{Z}/(p)$ used in [[modular arithmetic]], is also written as $\widehat{\mathbb{Z}}_p$) may be described in one of several ways: \begin{enumerate}% \item To the person on the street, it may be described as (the ring of) numbers written in base $p$, but allowing infinite expansions to the left. Thus, numbers of the form \begin{displaymath} \sum_{n \geq 0} a_n p^n \end{displaymath} where $0 \leq a_n \lt p$, added and multiplied with the usual method of carrying familiar from adding and multiplying ordinary integers. \item More abstractly, it is the [[limit]] $\underset{\leftarrow}{\lim} \mathbb{Z}/(p^n)$, in the [[category]] of (unital) [[ring|rings]], of the [[diagram]] \begin{displaymath} \ldots \to \mathbb{Z}/(p^{n+1}) \to \mathbb{Z}/(p^n) \to \ldots \to \mathbb{Z}/(p) . \end{displaymath} This is also a limit in the category of [[topological rings]], taking the rings in the diagram to have [[discrete topologies]]. \item Alternatively, it is the [[metric completion]] of the ring of [[integers]] $\mathbb{Z}$ with respect to the $p$-adic [[absolute value]]. Since addition and multiplication of integers are [[uniform space|uniformly continuous]] with respect to the $p$-adic [[absolute value]], they extend uniquely to a uniformly continuous addition and multiplication on $\mathbb{Z}_p$. Thus $\mathbb{Z}_p$ is a [[topological ring]]. \item Also $\mathbb{Z}[ [ x ] ]/(x-p)\mathbb{Z}[ [ x ] ]$, see at \emph{[[analytic completion]]}. \end{enumerate} Hence one also speaks of the \emph{$p$-[[adic completion]]} of the integers. See [[completion of a ring]] (which generalizes 2\&3). There is also this characterization: \begin{lemma} \label{pAdicIntegersAspExtensionofFpByThemselves}\hypertarget{pAdicIntegersAspExtensionofFpByThemselves}{} There is a [[short exact sequence]] \begin{displaymath} 0 \to \mathbb{Z}_{p} \overset{p \cdot (-)}{\longrightarrow} \mathbb{Z}_{p} \longrightarrow \mathbb{Z}/p\mathbb{Z} \to 0 \,. \end{displaymath} \end{lemma} \begin{proof} Consider the following [[commuting diagram]] \begin{displaymath} \itexarray{ \vdots && \vdots && \vdots \\ \downarrow && \downarrow && \downarrow \\ \mathbb{Z}/p^3\mathbb{Z} &\overset{p\cdot (-)}{\longrightarrow}& \mathbb{Z}/p^4 \mathbb{Z} &\longrightarrow& \mathbb{Z}/p\mathbb{Z} \\ \downarrow && \downarrow && \downarrow \\ \mathbb{Z}/p^2\mathbb{Z} &\overset{p\cdot (-)}{\longrightarrow}& \mathbb{Z}/p^3 \mathbb{Z} &\longrightarrow& \mathbb{Z}/p\mathbb{Z} \\ \downarrow && \downarrow && \downarrow \\ \mathbb{Z}/p\mathbb{Z} &\overset{p\cdot (-)}{\longrightarrow}& \mathbb{Z}/p^2 \mathbb{Z} &\longrightarrow& \mathbb{Z}/p\mathbb{Z} \\ \downarrow && \downarrow && \downarrow \\ 0 &\longrightarrow& \mathbb{Z}/p\mathbb{Z} &\longrightarrow& \mathbb{Z}/p\mathbb{Z} } \,. \end{displaymath} Each horizontal sequence is exact. Taking the [[limit]] over the vertical sequences yields the sequence in question. Since limits commute over limits, the result follows. \end{proof} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{topology}{}\subsubsection*{{Topology}}\label{topology} The ring of $p$-adic integers has the following properties: \begin{itemize}% \item As a [[topological space]], it is [[compact space|compact]], [[Hausdorff space|Hausdorff]], and [[totally disconnected space|totally disconnected]] (i.e., is a [[Stone space]]). Moreover, every point is an [[accumulation point]], and there is a countable basis of [[clopen set|clopen sets]] -- a Stone space with these properties must be [[homeomorphism|homeomorphic]] to [[Cantor space]]. \item As a [[topological group]] under addition, it is therefore an [[almost connected group]]. As an [[abelian group|abelian]] [[compact group]], it is [[Pontryagin duality|Pontryagin dual]] to the [[Prüfer group|Prüfer]] $p$-group as [[discrete group]]. \end{itemize} \hypertarget{relation_to_profinite_completion_of_the_integers}{}\subsubsection*{{Relation to profinite completion of the integers}}\label{relation_to_profinite_completion_of_the_integers} \begin{example} \label{ProfCompletionOfIntegers}\hypertarget{ProfCompletionOfIntegers}{} The [[profinite completion of the integers]] is \begin{displaymath} \widehat {\mathbb{Z}} \coloneqq \underset{\leftarrow}{\lim}_{n \in \mathbb{N}} (\mathbb{Z}/n\mathbb{Z}) \,. \end{displaymath} This is [[isomorphism|isomorphic]] to the [[product]] of the $p$-adic integers for all $p$ \begin{displaymath} \widehat{\mathbb{Z}} \simeq \underset{p\; prime}{\prod} \mathbb{Z}_p \,. \end{displaymath} \end{example} (\hyperlink{Lenstra}{e.g. Lenstra, example 2.2}) \begin{defn} \label{}\hypertarget{}{} The ring of integral [[adeles]] $\mathbb{A}_{\mathbb{Z}}$ is the [[product]] of the profinite completion $\widehat{\mathbb{Z}}$ of the integers, example \ref{ProfCompletionOfIntegers}, with the [[real numbers]] \begin{displaymath} \mathbb{A}_{\mathbb{Z}} \coloneqq \mathbb{R} \times \widehat{\mathbb{Z}} \,. \end{displaymath} The [[group of units]] of the ring of adeles is called the group of [[ideles]]. \end{defn} \hypertarget{pontrajgin_duality_to_prfer_group}{}\subsubsection*{{Pontrajgin duality to Pr\"u{}fer $p$-group}}\label{pontrajgin_duality_to_prfer_group} Under [[Pontryagin duality]], the [[abelian group]] underlying $\mathbb{Z}_p$ maps to the [[Prüfer p-group]] $\mathbb{Z}[p^{-1}]/\mathbb{Z}$, see at \emph{[[Pontryagin duality for torsion abelian groups]]}. \begin{displaymath} \itexarray{ &\mathbb{Z}[p^{-1}]/\mathbb{Z} &\hookrightarrow& \mathbb{Q}/\mathbb{Z} &\hookrightarrow& \mathbb{R}/\mathbb{Z} \\ {}^{\mathllap{hom(-,\mathbb{R}/\mathbb{Z})}}\downarrow \\ &\mathbb{Z}_p &\leftarrow& \hat \mathbb{Z} &\leftarrow& \mathbb{Z} } \end{displaymath} \hypertarget{AsFormalNeighbourhoodOfPrime}{}\subsubsection*{{As the formal neighbourhood of a prime}}\label{AsFormalNeighbourhoodOfPrime} The [[formal spectrum]] $Spf(\mathbb{Z}_p)$ of $\mathbb{Z}_p$ may be understood as the [[formal neighbourhood]] of the point corresponding to the [[prime]] $p$ in the [[prime spectrum]] $Spec(\mathbb{Z})$ of the [[integers]]. The inclusion \begin{displaymath} \{p\} \hookrightarrow Spf(\mathbb{Z}_p) \hookrightarrow Spec(\mathbb{Z}) \end{displaymath} is the [[Isbell duality|formal dual]] of the canonical [[projection]] maps $\mathbb{Z}\to \mathbb{Z}_p\to \mathbb{Z}/(p)$. This plays a central role for instance in the [[function field analogy]]. It is highlighted for instance in (\href{Hartl06}{Hartl 06, 1.1}, \hyperlink{Buium13}{Buium 13, section 1.1.3}). See also at \emph{[[arithmetic jet space]]} and at \emph{[[ring of Witt vectors]]}. [[!include infinitesimal and local - table]] \hypertarget{related_notions}{}\subsection*{{Related notions}}\label{related_notions} \begin{itemize}% \item $p$-[[p-adic number|adic number]], [[adele]]. \item [[p-adic complex number]] \item [[Z-infinity-module]] \item [[p-completion]] \item [[local-global principle]] \item [[p-adic homotopy]] \item [[ℓ-adic cohomology]] \item [[p-adic geometry]] \item [[p-adic physics]] \item [[motivic integration]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Introductions and surveys include \begin{itemize}% \item [[Dennis Sullivan]], pp. 9 of \emph{Localization, Periodicity and Galois Symmetry} (The 1970 MIT notes) edited by [[Andrew Ranicki]], K-Monographs in Mathematics, Dordrecht: Springer (\href{http://www.maths.ed.ac.uk/~aar/surgery/gtop.pdf}{pdf}) \item Bernard Le Stum, \emph{One century of $p$-adic geometry -- From Hensel to Berkovich and beyond} talk notes, June 2012 (\href{http://www-irma.u-strasbg.fr/IMG/pdf/NotesCoursLeStum.pdf}{pdf}) \item [[Hendrik Lenstra]], \emph{Profinite groups} (\href{http://websites.math.leidenuniv.nl/algebra/Lenstra-Profinite.pdf}{pdf}) \end{itemize} The [[synthetic differential geometry]]-aspect of the $p$-adic numbers is highlighted for instance in \begin{itemize}% \item [[Urs Hartl]], \emph{A Dictionary between Fontaine-Theory and its Analogue in Equal Characteristic} (\href{http://arxiv.org/abs/math/0607182}{arXiv:math/0607182}) \item [[Alexandru Buium]], \emph{Differential calculus with integers} (\href{http://arxiv.org/abs/1308.5194}{arXiv:1308.5194}) \end{itemize} [[!redirects p-adic integer]] [[!redirects p-adic integers]] [[!redirects adic integer]] [[!redirects adic integers]] [[!redirects ring of p-adic integers]] [[!redirects rings of p-adic integers]] \end{document}