\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{p-adic number} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{arithmetic}{}\paragraph*{{Arithmetic}}\label{arithmetic} [[!include arithmetic geometry - contents]] \hypertarget{adic_numbers}{}\section*{{$p$-adic numbers}}\label{adic_numbers} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{RecollectionOfPAdicIntegers}{Recollection of the $p$-adic integers}\dotfill \pageref*{RecollectionOfPAdicIntegers} \linebreak \noindent\hyperlink{as_an_endomorphism_ring}{As an endomorphism ring}\dotfill \pageref*{as_an_endomorphism_ring} \linebreak \noindent\hyperlink{PAdicNumbersProper}{The $p$-adic numbers proper}\dotfill \pageref*{PAdicNumbersProper} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{basic_properties}{Basic properties}\dotfill \pageref*{basic_properties} \linebreak \noindent\hyperlink{as_a_field_completion}{As a field completion}\dotfill \pageref*{as_a_field_completion} \linebreak \noindent\hyperlink{Disconnectedness}{Topological disconnectedness and G-topology}\dotfill \pageref*{Disconnectedness} \linebreak \noindent\hyperlink{pontryagin_duality}{Pontryagin duality}\dotfill \pageref*{pontryagin_duality} \linebreak \noindent\hyperlink{function_field_analogy}{Function field analogy}\dotfill \pageref*{function_field_analogy} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $p$ any [[prime number]], the \emph{$p$-adic [[numbers]]} $\mathbb{Q}_p$ (or \emph{$p$-adic rational numbers}, for emphasis) are a [[field]] that [[complete field|completes]] the field of [[rational numbers]]. As such they are analogous to [[real numbers]]. A crucial difference is that the reals form an [[archimedean field]], while the $p$-adic numbers form a [[non-archimedean field]]. $p$-Adic numbers play a role in non-archimedean [[analytic geometry]] that is analogous to the role of the [[real numbers]]/[[Cartesian spaces]] in ordinary [[differential geometry]]. Moreover, as such they serve as an approximation technique in [[arithmetic geometry]] over [[prime fields]] $\mathbb{F}_p$ (see e.g. \hyperlink{Lubicz}{Lubicz}). There have long been speculations (see the references \hyperlink{ReferencesApplications}{below}) that this must mean that $p$-adic numbers also play a central role in the description of [[physics]], see \emph{[[p-adic physics]]}. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} We first recall the definition and construction of the [[p-adic integers]] \begin{itemize}% \item \hyperlink{RecollectionOfPAdicIntegers}{Recollection of the p-adic integers} \end{itemize} and then consider \begin{itemize}% \item \hyperlink{PAdicNumbersProper}{The p-adic numbers proper} \end{itemize} \hypertarget{RecollectionOfPAdicIntegers}{}\subsubsection*{{Recollection of the $p$-adic integers}}\label{RecollectionOfPAdicIntegers} Let $\mathbf{Z}$ be the [[ring]] of [[integers]] and for every $q\neq 0$, $q\mathbf{Z}$ its ideal consisting of all integer multiples of $q$, and $\mathbf{Z}/q\mathbf{Z}$ the corresponding [[quotient]], the ring of residues mod $q$. Let now $p\in \mathbf{Z}_+$ be a [[prime number]]. Then for any two positive integers $n\geq m$ there is an inclusion $p^m \mathbf{Z}\subset p^n\mathbf{Z}$ which induces the canonical homomorphism of quotients $\phi_{n,m}:\mathbf{Z}/p^n\mathbf{Z}\to \mathbf{Z}/p^m\mathbf{Z}$. These homomorphism for all pairs $n\geq m$ form a family closed under composition, and in fact a category, which is in fact a poset, and moreover a directed system of (commutative unital) rings. The \textbf{ring of [[p-adic integers]]} $\mathbf{Z}_p$ is the (inverse) [[limit]] of this directed system (inside the category of rings). Regarding that the rings in the system are finite, it is clear that the underlying set of $\mathbf{Z}_p$ has a natural topology as a [[profinite space|profinite]] ([[Stone space|Stone]]) space and it is in particular a [[compact space|compact]] [[Hausdorff topological space|Hausdorff topological ring]]. More concretely, $\mathbf{Z}_p$ is the closed (hence compact) subspace of the cartesian product $\prod_{n} \mathbf{Z}/p^n\mathbf{Z}$ of discrete topological spaces $\mathbf{Z}/p^n\mathbf{Z}$ (which is by the [[Tihonov theorem]] compact Hausdorff) consisting of [[thread]]s, i.e. sequences of the form $x = (...,x_n,...,x_2,x_1)$ with $x_n\in p^n\mathbf{Z}$ and satisfying $\phi_{n,m}(x_n) = x_m$. The kernel of the projection $pr_n: \mathbf{Z}_p\to\mathbf{Z}/p^n\mathbf{Z}$, $x\mapsto x_n$ to the $n$-th component (which is the corresponding projection of the limiting cone) is $p^n\mathbf{Z}_p\subset\mathbf{Z}_p$, i.e. the sequence \begin{displaymath} 0 \longrightarrow \mathbf{Z}_p\stackrel{p^n}\longrightarrow \mathbf{Z}_p\longrightarrow \mathbf{Z}/p^n\mathbf{Z} \longrightarrow 0 \end{displaymath} is an [[exact sequence]] of [[abelian groups]], hence also $\mathbf{Z}_p/p^n\mathbf{Z}_p\cong \mathbf{Z}/p^n\mathbf{Z}$. An element $u$ in $\mathbf{Z}_p$ is invertible (and called a $p$-adic unit) iff $u$ is not divisible by $p$. Let $U\subset\mathbf{Z}_p$ be the group of all invertible elements in $\mathbf{Z}_p$. Then \emph{every element $x\in \mathbf{Z}_p$ can be uniquely written as $s= u p^n$ with $n\geq 0$ and $u\in U$}. The correspondence $x\mapsto n$ defines a [[discrete valuation]] $v_p:\mathbf{Z}_p\to \mathbf{Z}\cup\{\infty\}$ called the [[p-adic valuation]] and $n$ is said to be the $p$-adic valuation of $x$. Of course, $v_p(0)=\infty$ as required by the axioms of valuation. The [[norm]] induced by the valuation is (up to equivalence) given by ${|x|}_p = p^{-v_p(x)}$, and this in turn induces a metric \begin{displaymath} d(x,y) = {|x-y|}_p, \end{displaymath} making the ring $\mathbf{Z}_p$ a [[complete metric space]] and in fact a completion of $\mathbf{Z}$, in that $d$ is a complete [[metric]], and $\mathbf{Z}$ is dense in it. Concretely, a $p$-adic integer $x$ may be written as a base-$p$ expansion \begin{displaymath} x = \sum_{n \geq 0} a_n p^n \end{displaymath} with $a_n \in \{0, 1, \ldots, p-1\}$. Addition and multiplication are performed with [[carrying]] as in ordinary base-$p$ arithmetic, carried infinitely far to the left if $x$ is written as $\ldots a_n a_{n-1} \ldots a_1 a_0$. \hypertarget{as_an_endomorphism_ring}{}\paragraph*{{As an endomorphism ring}}\label{as_an_endomorphism_ring} Algebraically, the ring of $p$-adic integers is isomorphic to the endomorphism ring $\hom(\mathbf{Z}(p^\infty), \mathbf{Z}(p^\infty))$ where $\mathbf{Z}(p^\infty)$ is the [[Pruefer group|Prüfer group]] $\mathbf{Z}(p^\infty) \coloneqq \mathbb{Z}[1/p]/\mathbb{Z}$. In particular, $\mathbf{Z}(p^\infty)$ is tautologically a $\mathbf{Z}_p$-module. Relatedly, the additive group of $p$-adic integers is [[Pontrjagin duality|Pontrjagin dual]] to $\mathbf{Z}(p^\infty)$. Observe that $\mathbf{Z}(p^\infty)$ embeds in $S^1$ as the set of all [[root of unity|roots of unity]] of order $p^n$, and that every character $\chi: \mathbf{Z}(p^\infty) \to S^1$ factors through this embedding $\mathbf{Z}(p^\infty) \hookrightarrow S^1$. \hypertarget{PAdicNumbersProper}{}\subsubsection*{{The $p$-adic numbers proper}}\label{PAdicNumbersProper} The \textbf{field of $p$-adic numbers} $\mathbf{Q}_p$ is the [[field of fractions]] of the [[p-adic integers]] $\mathbf{Z}_p$. The $p$-adic valuation $v_p$ extends to a discrete valuation, also denoted $v_p$ on $\mathbf{Q}_p$. Indeed, it is still true for all $x\in \mathbf{Q}_p$ that they can be uniquely written in the form $p^n u$ where $u\in U$ (the same group $U$ as before), but now one needs to allow $n\in \mathbf{Z}$. One defines the metric on $\mathbf{Q}_p$ by the same formula as for $\mathbf{Z}_p$. It appears that $\mathbf{Q}_p$ is a [[complete field]] (in particular locally compact Hausdorff) and that $\mathbf{Z}_p$ is an \emph{open} subring. The distance $d$ satisfies the ``ultrametric'' inequality \begin{displaymath} d(x,z) \leq sup\{d(x,y),d(y,z)\} \end{displaymath} Concretely, a $p$-adic number $x$ may be written as $\sum_{n \geq k} a_n p^n$, with only finitely many negative powers of $p$ occurring. If $k \lt 0$, the expansion is conventionally displayed as \begin{displaymath} x = \ldots a_1 a_0.a_{-1} \ldots a_k \end{displaymath} with finitely many terms to the ``right'' of the ``decimal'' point. Again such expressions are added and multiplied with carrying as in ordinary arithmetic. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{basic_properties}{}\subsubsection*{{Basic properties}}\label{basic_properties} \begin{prop} \label{InvertiblepAdic}\hypertarget{InvertiblepAdic}{} An element $x\in \mathbb{Z}_p$ is invertible precisely if $x_0 \neq 0$. \end{prop} \hypertarget{as_a_field_completion}{}\subsubsection*{{As a field completion}}\label{as_a_field_completion} [[Ostrowski's theorem]] implies there are precisely two kinds of [[complete field|completions]] of the [[rational numbers]]: the [[real numbers]] and the $p$-adic numbers. \begin{theorem} \label{}\hypertarget{}{} \textbf{([[Ostrowski's theorem]])} Any non-trivial [[absolute value]] on the [[rational numbers]] is equivalent either to the standard real absolute value, or to the $p$-adic absolute value. \end{theorem} \hypertarget{Disconnectedness}{}\subsubsection*{{Topological disconnectedness and G-topology}}\label{Disconnectedness} While the $p$-adic numbers are complete in the [[p-adic norm]], that [[topology]] is exotic: $\mathbb{Q}_p$ is a locally compact, Hausdorff, [[totally disconnected topological space]]. For that reason the naive idea of formulating [[p-adic geometry]] in analogy to [[complex analytic geometry]] as modeled on domains in $\mathbb{Q}_p^n$, regarded with their [[subspace topology]], fails (for instance there would be no [[analytic continuation]]), as also all these domains are totally disconnected. Instead there is (\hyperlink{Tate71}{Tate 71}) a suitable [[Grothendieck topology]] on such [[affinoid domains]] -- the \emph{[[G-topology]]} -- with respect to which there is a good theory of [[non-archimedean analytic geometry]] (``[[rigid analytic geometry]]'') and hence in particular of [[p-adic geometry]]. Moreover, one may sensibly assign to an $p$-adic domain a [[topological space]] which \emph{is} well behaved (in particular locally connected and even locally contractible), this is the \emph{[[analytic spectrum]]} construction. The resulting topological space is equipped with covers by [[affinoid domain]] under the [[analytic spectrum]] are called [[Berkovich spaces]]. \hypertarget{pontryagin_duality}{}\subsubsection*{{Pontryagin duality}}\label{pontryagin_duality} Earlier we observed that as an additive compact Hausdorff [[topological group]], the inverse limit $\mathbf{Z}_p = \lim_{\leftarrow n} \mathbb{Z}/(p^n)$ is [[Pontryagin duality|dual]] to the discrete [[Pruefer group|Prüfer group]] $\mathbf{Z}(p^\infty) \coloneqq \mathbb{Z}[1/p]/\mathbb{Z}$ that is isomorphic to a direct limit of finite cyclic groups $\lim_{\to n} \mathbb{Z}/(p^n)$. The canonical inclusion $\mathbb{Z}[1/p] \to \mathbf{Q}_p$ induces an isomorphism $\mathbf{Z}(p^\infty) \to \mathbf{Q}_p/\mathbf{Z}_p$, in fact an isomorphism of $\mathbf{Z}_p$-modules, so there is an exact sequence \begin{displaymath} 0 \to \mathbf{Z}_p \stackrel{i}{\hookrightarrow} \mathbf{Q}_p \stackrel{q}{\to} \mathbf{Z}(p^\infty) \to 0. \end{displaymath} This exact sequence is Pontrjagin self-dual in the sense that the map $\mathbf{Q}_p \to \mathbf{Q}_p^\wedge$ induced from the pairing \begin{displaymath} \mathbf{Q}_p \times \mathbf{Q}_p \stackrel{mult}{\to} \mathbf{Q}_p \stackrel{q}{\to} \mathbb{Z}[1/p]/\mathbb{Z} \hookrightarrow \mathbb{R}/\mathbb{Z} \end{displaymath} fits into an isomorphism of exact sequences \begin{displaymath} \itexarray{ 0 & \to & \mathbf{Z}_p & \stackrel{i}{\to} & \mathbf{Q}_p & \stackrel{q}{\to} & \mathbf{Z}(p^\infty) & \to & 0 \\ & & \downarrow & & \downarrow & & \downarrow & & \\ 0 & \to & \mathbf{Z}(p^\infty)^\wedge & \stackrel{q^\wedge}{\to} & \mathbf{Q}_p^\wedge & \stackrel{i^\wedge}{\to} & \mathbf{Z}_p^\wedge & \to & 0 } \end{displaymath} where the commutativity of the squares can be traced to the fact that $q$ is a $\mathbf{Z}_p$-module homomorphism, and where the vertical isomorphisms on left and right come from [[Pontrjagin duality]]. The middle arrow is then an isomorphism by the [[short five lemma]] for [[topological groups]], which holds by protomodularity of topological groups. This self-duality figures in Tate's thesis; for more, see [[ring of adeles]]. \hypertarget{function_field_analogy}{}\subsubsection*{{Function field analogy}}\label{function_field_analogy} [[!include function field analogy -- table]] \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[ring of adeles]] \item [[carrying]] \item [[p-adic integration]] \item [[natural number]], [[integer]], [[rational number]], [[algebraic number]], [[Gaussian number]], [[irrational number]], [[real number]] \item [[p-adic integer]], [[p-adic complex number]] \item [[p-adic geometry]] \begin{itemize}% \item [[p-adic analytic space]], [[non-commutative analytic space]] \end{itemize} \item [[p-adic homotopy]] \item [[p-adic cohomology]] \item [[p-adic physics]] \begin{itemize}% \item [[p-adic string theory]] \end{itemize} \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} The $p$-adic numbers had been introduced in \begin{itemize}% \item [[Kurt Hensel]], \emph{\"U{}ber eine neue Begr\"u{}ndung der Theorie der algebraischen Zahlen} Jahresbericht der Deutschen Mathematiker-Vereinigung 6 (3): 83--88. (1897) \end{itemize} A standard reference is \begin{itemize}% \item [[Jean-Pierre Serre]], \emph{A course in arithmetic}, Grad. Texts in Math. \textbf{7}, Springer (1973) \end{itemize} Review in the context of [[p-localization|p-local]] [[homotopy theory]] is in \begin{itemize}% \item [[Dennis Sullivan]], pp. 9 of \emph{Localization, Periodicity and Galois Symmetry} (The 1970 MIT notes) edited by [[Andrew Ranicki]], K-Monographs in Mathematics, Dordrecht: Springer (\href{http://www.maths.ed.ac.uk/~aar/surgery/gtop.pdf}{pdf}) \end{itemize} Review of the use of $p$-adic numbers in [[arithmetic geometry]] includes \begin{itemize}% \item [[David Lubicz]], \emph{An introduction to the algorithmic of $p$-adic numbers} (\href{http://www.hyperelliptic.org/tanja/conf/summerschool08/slides/p-adics.pdf}{pdf}) \end{itemize} A formalization in [[homotopy type theory]] and there in [[Coq]] is discussed in \begin{itemize}% \item \'A{}lvaro Pelayo, [[Vladimir Voevodsky]], [[Michael Warren]], \emph{A preliminary univalent formalization of the p-adic numbers} (\href{http://arxiv.org/abs/1302.1207}{arXiv:1302.1207}) \end{itemize} $p$-adic [[differential equations]] are discussed in \begin{itemize}% \item [[Kiran Kedlaya]], \emph{$p$-adic differential equations} (\href{http://math.ucsd.edu/~kedlaya/18.787/compiled.pdf}{pdf}, \href{http://math.ucsd.edu/~kedlaya/18.787/}{course notes}) \item [[Gilles Cristol]], \emph{Exposants $p$-adiques et solutions dans les couronnes} (\href{http://www.math.jussieu.fr/~christol/exposants.pdf}{pdf}) \end{itemize} The development of [[rigid analytic geometry]] starts with \begin{itemize}% \item [[John Tate]], \emph{Rigid analytic spaces}, Invent. Math. \textbf{12}:257--289, 1971. \end{itemize} [[p-adic homotopy theory]] is discussed in \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Rational and p-adic Homotopy Theory]]} \end{itemize} [[!redirects p-adic]] [[!redirects p-adic number]] [[!redirects p-adic numbers]] [[!redirects adic number]] [[!redirects adic numbers]] [[!redirects p-adic number field]] [[!redirects p-adic number fields]] [[!redirects p-adic field]] [[!redirects p-adic fields]] [[!redirects p-adic valuation]] [[!redirects p-adic valuations]] [[!redirects p-adic norm]] [[!redirects p-adic norms]] [[!redirects p-adic rational number]] [[!redirects p-adic rational numbers]] [[!redirects ring of p-adic numbers]] [[!redirects rings of p-adic numbers]] [[!redirects ring of p-adic rational numbers]] [[!redirects rings of p-adic rational numbers]] \end{document}