\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{p-adic string theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{geometry}{}\paragraph*{{Geometry}}\label{geometry} [[!include higher geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{open_string_amplitudes}{Open string amplitudes}\dotfill \pageref*{open_string_amplitudes} \linebreak \noindent\hyperlink{TopologicalWittenGenus}{Closed string 1-loop vacuum amplitudes (topological Witten genus)}\dotfill \pageref*{TopologicalWittenGenus} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} What is called \emph{$p$-adic string theory} is the study of a variant of [[scattering amplitudes]] in [[string theory]] (hence [[string scattering amplitudes]]) where the [[worldsheet]] of the [[string]] is regarded not as a [[Riemann surface]] but as an object in [[p-adic geometry]]. \hypertarget{open_string_amplitudes}{}\subsubsection*{{Open string amplitudes}}\label{open_string_amplitudes} The original observation is that of (\hyperlink{Volovich87}{Volovich 87}, reviewed in \hyperlink{VVZ95}{VVZ 95, section XIV}) that the [[integral]] expression for the [[Veneziano amplitude]] of the [[open string|open]] [[bosonic string]] naturally generalizes from an integral over the [[real numbers]] (which in this case parameterize the [[boundary]] of the [[open string]] [[worldsheet]]) to the [[p-adic numbers]] by \emph{[[adelic integration]]}. The standard [[Veneziano amplitude]] has the expression \begin{displaymath} \int_{\mathbb{R}} {\vert x\vert}^{a-1} \cdot {\vert 1-x\vert}^{b-1} d x \end{displaymath} where the [[norm]] involved is the usual [[absolute value]], and the proposed $p$-adic version is hence \begin{displaymath} \int_{\mathbb{Q}_p} {\vert x\vert}_p^{a-1} \cdot {\vert 1-x\vert}_p^{b-1} d x \end{displaymath} with the [[p-adic norm]] instead. The main result here is (\hyperlink{FreundWitten87}{Freund-Witten 87}) that the ordinary [[Veneziano amplitude]] equals the inverse of the product of its $p$-adic versions, for all primes $p$, apparently a version of the \href{group%20of%20ideles#ProductFormula}{idelic product formula}. With due regularization this result carries over to other [[string scattering amplitudes]], too. When forming these products one also speaks of \emph{[[ring of adeles|adelic]] string theory}. Since the [[Veneziano amplitude]] concerns the [[bosonic string]] [[tachyon]] [[state]], [[p-adic string theory]] has been discussed a lot in the context of [[tachyon condensation]] and [[Sen's conjecture]] (\hyperlink{Cottrell02}{Cottrell 02}). Traditionally literature on $p$-adic string theory asserts that the generalization of this from the [[open string]] to the [[closed string]] remains unclear (e.g \hyperlink{CMZ89}{CMZ 89, section 4}, \hyperlink{Cottrell02}{Cottrell 02, section 5}), since it is unclear which adic version of the [[complex numbers]] to use. However, in other parts of the literature adic versions of closed strings are common, this we discuss \hyperlink{TopologicalWittenGenus}{below}. \hypertarget{TopologicalWittenGenus}{}\subsubsection*{{Closed string 1-loop vacuum amplitudes (topological Witten genus)}}\label{TopologicalWittenGenus} Generally, the development of string theory has shown that its [[worldsheet]] is usefully regarded as an object in [[algebraic geometry]] (see also at \emph{[[number theory and physics]]}) and mathematically the generalization from [[algebraic varieties]] over the [[complex numbers]] to more general algebraic varieties (or [[schemes]]) is often natural, if not compelling. For instance when the [[Witten genus]] (essentially the [[partition function]] of the [[superstring]]) is refined to the [[string orientation of tmf]] then the [[elliptic curves]] over the [[complex numbers]] which serve as the [[torus|toroidal]] [[worldsheets]] over the [[complex numbers]] are generalized to [[elliptic curves]] over general [[rings]] and by the [[fracture theorems]] the computations in [[tmf]] in fact typically proceed (see \href{tmf#DecomopositionViaArithmeticSquares}{here}) by decomposing the general problem into that of ellitpic curves over the [[rational numbers]] and over the [[p-adic integers]]. The result refines the [[Witten genus]] \begin{displaymath} \Omega^String_{\bullet} \longrightarrow MF_\bullet \end{displaymath} (being a [[ring]] [[homomorphism]]) from the [[String structure]] [[cobordism ring]] to that of [[modular forms]] to one of [[E-∞ rings]] \begin{displaymath} M String \longrightarrow tmf \end{displaymath} from the [[String structure]] [[Thom spectrum]] to [[tmf]]. Notice that $M String$ here classifies String-[[cobordism cohomology theory|cobordism]] and hence parameterizes ordinary (not $p$-adic) [[target space|target]] [[spacetime]] [[manifolds]], while $tmf$ on the right does regard the [[genus of a surface|genus]]-1 [[worldsheet]] as a general [[elliptic curve]], hence in particular possibly as an \href{elliptic%20curve#OverpAdics}{elliptic curve over the p-adic integers}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item The interesting aspects of $p$-adic string theory have led people to consider \emph{[[p-adic physics]]} more generally. But it remains noteworthy that in $p$-adic string theory it is exactly only the [[worldsheet]] which is regarded in [[p-adic geometry]], while for instance the [[complex numbers]] as they appear as [[coefficients]] of [[quantum physics]] are not replaced by $p$-adics. \item [[p-adic AdS-CFT]] \item [[number theory and physics]] \item [[p-adic geometry]] \item [[p-adic homotopy]] \item [[p-adic cohomology]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The original articles include \begin{itemize}% \item Peter Freund, Mark Olson, \emph{Non-archimedean strings}, Physics Letters B 199,2 (1987) () \item I. V. Volovich, \emph{p- - }, , 71:3 (1987)\href{http://www.mathnet.ru/links/704079ec1d28d91ba6eb6d492359b387/tmf4962.pdf}{free Rus. pdf}; transl. \emph{$p$-adic space-time and string theory}, Theor. Math. Phys. \textbf{71}, 574--576 (1987), \href{http://dx.doi.org/10.1007/BF01017088}{eng doi}, \href{http://www.springerlink.com/content/k514t553607324n0/fulltext.pdf}{nonfree Eng. pdf} \end{itemize} That the ordinary [[Veneziano amplitude]] is the inverse product of all its $p$-adic versions is due to \begin{itemize}% \item [[Peter Freund]], [[Edward Witten]], \emph{Adelic string amplitudes}, Phys. Lett. B 199, 191 (1987). (\href{http://adsabs.harvard.edu/abs/1987PhLB..199..191F}{web record}) \end{itemize} also \begin{itemize}% \item Lee Brekke, [[Peter Freund]], Mark Olson, [[Edward Witten]], \emph{Non archimedean string dynamics}, Nucl. Phys. B302, 3 (1988) () \end{itemize} A detailed discussion of $p$-adic open [[string scattering amplitudes]] is in \begin{itemize}% \item L. Chekhov, A. Mironov, A. Zabrodin, \emph{Multiloop calculations in $p$-adic String theory and Bruhat-Tits Trees}, Comm. Math. Phys. 125, 675-711 (1989) (\href{http://projecteuclid.org/euclid.cmp/1104179635}{Euclid}) \end{itemize} A review of this is in \begin{itemize}% \item Lee Brekke and [[Peter Freund]], \emph{$p$-Adic numbers in physics}, Phys. Rep. 233, 1 (1993) (\href{http://adsabs.harvard.edu/abs/1993PhR...233....1B}{web record}) \end{itemize} and with an eye towards [[AdS-CFT duality]] in \begin{itemize}% \item [[Peter Freund]], \emph{$p$-adic Strings Then and Now} (\href{https://arxiv.org/abs/1711.00523}{arXiv:1711.00523}) \end{itemize} Discussion of [[tachyon condensation]] in $p$-adic string theory includes \begin{itemize}% \item William Cottrell, \emph{$p$-adic Strings and Tachyon Condensation}, 2002 (\href{http://jfi.uchicago.edu/~tten/teaching/Phys.291/Cottrell_Freund_2002.pdf}{pdf}) \end{itemize} See also \begin{itemize}% \item Miriam Bocardo-Gaspar, H. García-Compeán, W. A. Zúñiga-Galindo, \emph{Regularization of p-adic String Amplitudes, and Multivariate Local Zeta Functions} (\href{https://arxiv.org/abs/1611.03807}{arXiv:1611.03807}) \end{itemize} Relation to [[gravity]] and the zeros of the [[Riemann zeta function]] (hence the [[Riemann hypothesis]]): \begin{itemize}% \item [[An Huang]], [[Bogdan Stoica]], [[Shing-Tung Yau]], \emph{General relativity from $p$-adic strings} (\href{https://arxiv.org/abs/1901.02013}{arXiv:1901.02013}) \end{itemize} [[!redirects p-adic string theories]] [[!redirects adelic string theory]] [[!redirects adelic string theories]] [[!redirects p-adic string]] [[!redirects p-adic strings]] \end{document}