\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{p-divisible group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{the_cartier_dual}{The Cartier dual}\dotfill \pageref*{the_cartier_dual} \linebreak \noindent\hyperlink{dieudonn_modules}{Dieudonn\'e{} modules}\dotfill \pageref*{dieudonn_modules} \linebreak \noindent\hyperlink{examples_2}{Examples}\dotfill \pageref*{examples_2} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{pdivisible_groups_and_crystals}{p-divisible groups and crystals}\dotfill \pageref*{pdivisible_groups_and_crystals} \linebreak \noindent\hyperlink{relation_to_crystalline_cohomology}{Relation to crystalline cohomology}\dotfill \pageref*{relation_to_crystalline_cohomology} \linebreak \noindent\hyperlink{in_derived_algebraic_geometry}{In derived algebraic geometry}\dotfill \pageref*{in_derived_algebraic_geometry} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{original_texts_and_classical_surveys}{Original texts and classical surveys}\dotfill \pageref*{original_texts_and_classical_surveys} \linebreak \noindent\hyperlink{modern_surveys}{Modern surveys}\dotfill \pageref*{modern_surveys} \linebreak \noindent\hyperlink{further_development_of_the_theory}{Further development of the theory}\dotfill \pageref*{further_development_of_the_theory} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In great generality, for an [[integer]] $p$ a \emph{$p$-divisible group} is a [[inductive system|codirected diagram]] of [[abelian group|abelian]] [[group objects]] in a [[category]] $C$ where the abelian-group objects are (equivalently) the [[kernel|kernels]] of the map given by multiplication with a power of $p$; these kernels are also called $p^n$-torsions. In the classically studied case $p$ is a prime number, $C$ is the category of [[scheme|schemes]] over a commutative ring (mostly a field with prime characteristic) and the abelian [[group scheme|group schemes]] occurring in the diagram are assumed to be finite. In this case the diagram defining the $p$-divisible group can be described in terms of the growth of the [[order of a group|order]] of the group schemes in the diagram. Note that there is also a notion of [[divisible group]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} Fix a [[prime number]] $p$, a [[natural number|positive integer]] $h$, and a [[commutative ring]] $R$. Consider the group schemes $G$ over A \textbf{$p$-divisible group of height $h$ over $R$} is a [[codirected limit|codirected diagram]] $(G_\nu, i_\nu)_{\nu \in \mathbb{N}}$ where each $G_\nu$ is a finite commutative [[group scheme]] over $R$ of [[order of a group|order]] $p^{\nu h}$ that also satisfies the property that \begin{displaymath} 0\to G_\nu \stackrel{i_\nu}{\to} G_{\nu +1}\stackrel{p^\nu}{\to} G_{\nu +1} \end{displaymath} is [[exact sequence|exact]]. In other words, the maps of the system identify $G_\nu$ with the [[kernel]] of multiplication by $p^\nu$ in $G_{\nu +1}$. Some authors refer to $colim_\nu G_\nu$ (instead of the diagram itself) as the $p$-divisible group. \end{defn} It can be checked that a $p$-divisible group over $R$ is a $p$-torsion commutative [[formal group]] $G$ for which $p\colon G \to G$ is an [[isogeny]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{}\hypertarget{}{} The kernel of raising to the $p^\nu$ power on $\mathbb{G}_m$ (sometimes called [[p-torsion]]) is a [[group scheme]] $\mu_{p^\nu}$. The limit $\lim_{\to} \mu_{p^\nu}=\mu_{p^\infty}$ is a $p$-divisible group of height $1$. see Lipnowski \href{http://math.stanford.edu/~malipnow/expository/pdiv.pdf}{pg.2, example (b)} \end{example} \begin{example} \label{}\hypertarget{}{} The eponymous ($p$-divisible groups are sometimes called Barsotti-Tate groups) example is a special case of the previous one - namely [[the Barsotti-Tate group of an abelian variety]]. Let $X$ be an [[abelian variety]] over $R$ of dimension $g$, then the multiplication map by $p^\nu$ has kernel $_{p^\nu}X$ which is a finite [[group scheme]] over $R$ of order $p^{2g \nu}$. The natural inclusions satisfy the conditions for the limit denoted $X(p)$ to be a $p$-divisible group of height $2g$. \end{example} \begin{example} \label{}\hypertarget{}{} A theorem of \hyperlink{Tate}{Serre and Tate} says that there is an [[equivalence of categories]] between divisible, commutative, formal [[Lie group]]s over $R$ and the category of connected $p$-divisible groups over $R$ given by $\Gamma \mapsto \Gamma (p)$, where $\Gamma(p)=\lim_{\to} \mathrm{ker}(p^n)$. In particular, every connected $p$-divisible group is smooth \end{example} \hypertarget{the_cartier_dual}{}\subsection*{{The Cartier dual}}\label{the_cartier_dual} \begin{itemize}% \item Given a $p$-divisible group $G$, each individual $G_\nu$ has a [[Cartier dual]] $G_\nu^D$ since they are all group schemes. There are also maps $j_\nu$ that make the composite $G_{\nu+1}\stackrel{j_\nu}{\to} G_\nu \stackrel{i_\nu}{\to} G_{\nu +1}$ the multiplication by $p$ on $G_{\nu +1}$. After taking duals, the composite is still the multiplication by $p$ map on $G_{\nu +1}^D$, so it is easily checked that $(G_{\nu}^D, j_{\nu}^D)$ forms a $p$-divisible group called the Cartier dual. \item One of the important properties of the Cartier dual is that one can determine the height of a $p$-divisible group (often a hard task when in the abstract) using the information of the dimension of the formal group and its dual. For any $p$-divisible group, $G$, we have the formula that $ht(G)=ht(G^D)=\dim G + \dim G^D$. \end{itemize} \hypertarget{dieudonn_modules}{}\subsection*{{Dieudonn\'e{} modules}}\label{dieudonn_modules} For the moment see [[display of a p-divisible group]]. \hypertarget{examples_2}{}\subsubsection*{{Examples}}\label{examples_2} \begin{itemize}% \item The dual $\mu_{p^\infty}^D\simeq \mathbb{Q}_p/\mathbb{Z}_p$. \item For an abelian variety $X$, the dual is $X(p)^D=X^t(p)$ where $X^t$ denotes the dual abelian variety. Another proof that $X(p)$ has height $2g$ is to note that $X$ and $X^t$ have the same dimension $g$, so using our formula for height we get $ht(X(p))=2g$. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} The category of \'e{}tale $p$-divisible groups is equivalent to the category of $p$-adic representations of the fundamental group of the base scheme . \hypertarget{pdivisible_groups_and_crystals}{}\subsection*{{p-divisible groups and crystals}}\label{pdivisible_groups_and_crystals} (\ldots{}) References: \hyperlink{Weinstein}{Weinstein} \hypertarget{relation_to_crystalline_cohomology}{}\subsection*{{Relation to crystalline cohomology}}\label{relation_to_crystalline_cohomology} (\ldots{}) \hypertarget{in_derived_algebraic_geometry}{}\subsection*{{In derived algebraic geometry}}\label{in_derived_algebraic_geometry} See \hyperlink{pLurie}{Lurie}. An important notion: [[nonstationary p-divisible group]] \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item Important tools in the study of $p$-divisible groups are [[Witt ring|Witt rings]], [[Dieudonné module|Dieudonné modules]] and more generally [[Dieudonné theory|Dieudonné theories]] assigning to a $p$-divisible group an object of [[linear algebra]] such as a [[display of a p-divisible group]]. \item [[formal group]] \item [[group scheme]] \item [[Artin–Mazur formal group]] \item [[height of a variety]] \end{itemize} \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[lectures on p-divisible groups|Lectures on p-divisible groups]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} For references concerning [[Witt rings]] and [[Dieudonné modules]] see there. \hypertarget{original_texts_and_classical_surveys}{}\subsubsection*{{Original texts and classical surveys}}\label{original_texts_and_classical_surveys} \begin{itemize}% \item Barsotti, Iacopo (1962), ``Analytical methods for abelian varieties in positive characteristic'', Colloq. Th\'e{}orie des Groupes Alg\'e{}briques (Bruxelles, 1962), Librairie Universitaire, Louvain, pp. 77--85, MR 0155827 \item Demazure, Michel (1972), [[lectures on p-divisible groups|Lectures on p-divisible groups]], Lecture Notes in Mathematics, 302, Berlin, New York: Springer-Verlag, doi:10.1007/BFb0060741, ISBN 978-3-540-06092-5, MR 034426, \href{http://sites.google.com/site/mtnpdivisblegroupsworkshop/lecture-notes-on-p-divisible-groups}{web} \item Grothendieck, Alexander (1971), ``Groupes de Barsotti-Tate et cristaux'', Actes du Congr\`e{}s International des Math\'e{}maticiens (Nice, 1970), 1, Gauthier-Villars, pp. 431--436, MR 0578496 \item Messing, William (1972), The crystals associated to Barsotti-Tate groups: with applications to abelian schemes, Lecture Notes in Mathematics, 264, Berlin, New York: Springer-Verlag, doi:10.1007/BFb0058301, MR 0347836 \item Serre, Jean-Pierre (1995) 1966, ``Groupes p-divisibles (d'apr\`e{}s J. Tate) \href{http://www.numdam.org/item?id=SB_1966-1968__10__73_0}{web}, Exp. 318'', S\'e{}minaire Bourbaki, 10, Paris: Soci\'e{}t\'e{} Math\'e{}matique de France, pp. 73--86, MR 1610452 \item Stephen Shatz, Group Schemes, Formal Groups, and $p$-Divisible Groups in the book Arithmetic Geometry Ed. Gary Cornell and Joseph Silverman, 1986 \item Tate, John T. (1967), ``p-divisible groups.'' \href{http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.295.7566&rep=rep1&type=pdf}{pdf}, in Springer, Tonny A., Proc. Conf. Local Fields( Driebergen, 1966), Berlin, New York: Springer-Verlag, MR 0231827 \end{itemize} \hypertarget{modern_surveys}{}\subsubsection*{{Modern surveys}}\label{modern_surveys} \begin{itemize}% \item de Jong, A. J. (1998), Barsotti-Tate groups and crystals, ``Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998)'', Documenta Mathematica II: 259--265, ISSN 1431-0635, MR 1648076 \item Dolgachev, I.V. (2001), ``P-divisible group'' \href{http://www.encyclopediaofmath.org/index.php/P-divisible_group}{web}, in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4 \item Richard Pink, finite group schemes, 2004-2005, \href{http://www.math.ethz.ch/~pink/ftp/FGS/CompleteNotes.pdf}{pdf} \item Hoaran Wang, moduli spaces of p-divisible groups and period morphisms, Masters Thesis, 2009, \href{http://people.math.jussieu.fr/~dat/enseignement/M2HaoranWang.pdf}{pdf} \item [[Jared Weinstein]], [[Weinstein, the geometry of Lubin-Tate spaces|the geometry of Lubi-Tate spaces]], Lecture 1: Formal groups and formal modules, \href{http://www.math.ias.edu/~jaredw/FRGLecture.pdf}{pdf} \item Liang Xiao, notes on $p$-divisible groups, \href{http://math.uchicago.edu/~lxiao/files/notes/p-Divisble%20Groups.pdf}{pdf} \end{itemize} \hypertarget{further_development_of_the_theory}{}\subsubsection*{{Further development of the theory}}\label{further_development_of_the_theory} \begin{itemize}% \item Paul Goerss, p-divisible groups and Lurie's realization result, 2008, \href{http://www.math.ku.dk/~jg/homotopical2008/goerss.lec9.pdf}{pdf slides} \item Jacob Lurie, [[A Survey of Elliptic Cohomology]], section 4.2, \href{http://www.math.harvard.edu/~lurie/papers/survey.pdf}{pdf} \item Peter Scholze, Moduli of p-divisible groups, \href{http://arxiv.org/abs/1211.6357}{arxiv} \item Thomas Zink, a dieudonn\'e{} theory for p-divisible groups, \href{http://www.math.uni-bielefeld.de/~zink/CFTpaper.pdf}{pdf} \item Thomas Zink, list of publications and preprints, \href{http://www.math.uni-bielefeld.de/~zink/z_publ.html}{web} \item T. Zink, On the slope filtration, Duke Math. Journal, Vol.109 (2001), No.1, 79-95, \href{http://www.math.uni-bielefeld.de/~zink/slopes.pdf}{pdf} \item T. Zink, the [[display of a p-divisible group|display of a formal p-divisible group]], to appear in [[Astérisque]], \href{http://www.math.uni-bielefeld.de/~zink/display.pdf}{pdf} \item T. Zink, Windows for displays of p-divisible groups. in:Moduli of Abelian Varieties, Progress in Mathematics 195, Birkh\"a{}user 2001, \href{http://www.math.uni-bielefeld.de/~zink/Texel.pdf}{pdf} \end{itemize} [[!redirects p-divisible group]] [[!redirects p-divisible groups]] \end{document}