\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{parameterized WZW model} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{wesszuminowitten_theory}{}\paragraph*{{$\infty$-Wess-Zumino-Witten theory}}\label{wesszuminowitten_theory} [[!include infinity-Wess-Zumino-Witten theory - contents]] \hypertarget{quantum_field_theory}{}\paragraph*{{Quantum field theory}}\label{quantum_field_theory} [[!include functorial quantum field theory - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{Idea}{Idea}\dotfill \pageref*{Idea} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{the_heterotic_string}{The heterotic string}\dotfill \pageref*{the_heterotic_string} \linebreak \noindent\hyperlink{the_greenschwarz_super_branes_on_curved_super_spacetime}{The Green-Schwarz super $p$-branes on curved super spacetime}\dotfill \pageref*{the_greenschwarz_super_branes_on_curved_super_spacetime} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{Idea}{}\subsection*{{Idea}}\label{Idea} Where a \emph{[[WZW model]]} is a [[sigma model]] [[quantum field theory]] whose [[target space]] is a [[group]] $G$, a \emph{parameterization} of such a model is a sigma-model (subject usually to some constraints) whose target space now is the total space of a $G$-[[principal bundle]] such that the [[action functional]] when restricted to fields that take values only in any one [[fiber]], reduces to the given un-parameterized model. Parameterized WZW models have been argued to provide a more geometric and more complete description of the [[current algebra]]-sector of [[heterotic string]] backgrounds than the traditional construction in terms of worldsheet fermions (\hyperlink{GatesSiegel88}{Gates-Siegel 88}, \hyperlink{GKKS91}{Gates-Ketov-Kozenko-Solovev 91}, \hyperlink{DistlerSharpe10}{Distler-Sharpe 10, section 7}). In particular the [[Green-Schwarz anomaly]] of the heterotic string finds a natural interpretation as the [[obstruction]] to parameterizing the given WZW term over the given principal bundle: A ([[schreiber:∞-Wess-Zumino-Witten theory|higher]]) [[WZW model]] is an $n$-dimensional [[sigma-model]] [[field theory]] whose [[target space]] is a [[group]] $G$ and whose [[interaction]]-part of the [[action functional]] is the [[higher holonomy]] of a [[circle n-bundle with connection]] \begin{displaymath} \mathbf{L}_{WZW} \;\colon\; G \longrightarrow \mathbf{B}^n U(1)_{conn} \end{displaymath} (whose [[curvature]] is given by the global [[Maurer-Cartan form]] on $G$). If one has a $G$-[[principal bundle]] \begin{displaymath} \itexarray{ G &\hookrightarrow& X \\ && \downarrow \\ && B } \end{displaymath} over some base space $B$, then a [[lift of the structure group]] to the [[Heisenberg n-group]] $Heis_G(\mathbf{L}_{WZW})$ of $\mathbf{L}_{WZW}$ regarded as a [[prequantum n-bundle]], is the structure necessary and sufficient for the [[fiber]]-wise copies of $G$ and $\mathbf{L}_{WZW}$ glue fiberwise to a single [[circle n-bundle with connection]] \begin{displaymath} \mathbf{L}_{WZW}^X \;\colon\; X \longrightarrow \mathbf{B}^n U(1)_{conn} \end{displaymath} on the total space $X$ of this bundle. This hence yields what one may think of as a coherent collection of [[WZW models]] \emph{parameterized} over base space $B$. For the case that $G$ is a [[compact Lie group|compact]] [[semisimple Lie group]] and $\mathbf{L}_{WZW}$ its canonical WZW term (the [[circle n-bundle with connection|2-connection]] on the [[string 2-group]]), then \begin{displaymath} Heis_G(\mathbf{L}_{WZW})\simeq String(G) \end{displaymath} and hence the [[obstruction]] to the existence of a parameterization is precisely a [[string structure]], recovering the traditional statement of the [[Green-Schwarz anomaly]] (see \hyperlink{cwzw}{cwzw} for details of this claim). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{the_heterotic_string}{}\subsubsection*{{The heterotic string}}\label{the_heterotic_string} The [[heterotic string]] [[worldsheet]] [[theory (physics)|theory]] is a [[sigma model]] on [[spacetime]] $X$ combined with a chiral $G$-[[WZW model]] for $G = Spin \times E_8 \times E_8$ or similar and with the [[WZW term]] being the difference between the differentially twisted [[looping]] of the [[universal Chern-Simons circle 3-bundle|universal Chern-Simons 3-connection]] of $Spin$ with that of $E_8 \times E_8$. By (\hyperlink{FiorenzaRogersSchreiber13}{Fiorenza-Rogers-Schreiber 13, section 2.6.1}) we find in this case that the [[Heisenberg 2-group]] is the [[string 2-group]] \begin{displaymath} Heis(\mathbf{L}_{WZW^{het}}) \simeq String(G) \,. \end{displaymath} It follows thus from the above discussion that a consistent heterotic [[sigma model]] requires that the underlying $G$-[[principal bundle]] on [[spacetime]] admits a [[string structure]]. This is the famous [[Green-Schwarz anomaly]] cancellation condition, re-expressed as a consistency condition for parameterized WZW models. On the level of [[action functionals]] in [[codimension]] 0 this observation is due to (\hyperlink{DistlerSharpe10}{Distler-Sharpe 10, section 7}). \hypertarget{the_greenschwarz_super_branes_on_curved_super_spacetime}{}\subsubsection*{{The Green-Schwarz super $p$-branes on curved super spacetime}}\label{the_greenschwarz_super_branes_on_curved_super_spacetime} By \hyperlink{FiorenzaSatiSchreiber13}{Fiorenza-Sati-Schreiber 13} the super-[[branes]] of [[string theory]]/[[M-theory]] on [[super Minkowski spacetime]] $\mathbb{R}^{d-1,1;N}$ classified by the [[brane scan]]/[[schreiber:The brane bouquet|the brane bouqet]] are [[schreiber:∞-Wess-Zumino-Witten theory]] [[sigma-model]] \begin{displaymath} \mathbf{L}_{WZW^{brane}} \;\colon\; \mathbb{R}^{d-1,1;N} \longrightarrow \mathbf{B}^{p+1}(\mathbb{R}/\Gamma)_{conn} \,, \end{displaymath} where $\Gamma$ is the group of [[periods]] of the defining [[super L-∞ algebra]] [[L-∞ algebra cohomology|L-∞ cocycle]] \begin{displaymath} \mathbf{B} sIso_N(d-1,1) \longrightarrow \mathbf{B}^{p+2}(\mathbb{R}/\Gamma) \,. \end{displaymath} A necessary structure globalizing this to a curved super-spacetime $X$ is a [[G-structure]] on $X$ for $G = \mathbf{QuantMorph}(\mathbf{L}_{WZW^{brane}}^{inf})$ the restriction of the WZW term to the [[infinitesimal disk]]. Given this then the [[Green-Schwarz action functional]] refines to a [[local prequantum field theory]] datum $\mathbf{L}_{WZW^{brane}}$ globally defined on $X$. (For [[branes]] on which other branes may end, such as the [[D-branes]] and the [[M5-brane]], here [[super Minkowski spacetime]] is replaced by a [[extended Minkowski super spacetime]], as discussed in (\hyperlink{FiorenzaSatiSchreiber13}{Fiorenza-Sati-Schreiber 13})). More details are in (\hyperlink{cwzw}{cwzw}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[gauged WZW model]] \item [[definite globalization of WZW term]] \item [[higher Cartan geometry]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Parameterized WZW models as [[sigma models]] for the [[heterotic string]] originate in \begin{itemize}% \item [[Jim Gates]], [[Warren Siegel]], \emph{Leftons, Rightons, Nonlinear $\sigma$-Models, and Superstrings}, Phys.Lett. B206 (1988) 631 (\href{https://inspirehep.net/record/251286/}{spire}) \item [[Jim Gates]], \emph{Strings, superstrings, and two-dimensional lagrangian field theory}, pp. 140-184 in Z. Haba, J. Sobczyk (eds.) \emph{Functional integration, geometry, and strings}, proceedings of the XXV Winter School of Theoretical Physics, Karpacz, Poland (Feb. 1989), , Birkh\"a{}user, 1989. \item [[Jim Gates]], S. Ketov, S. Kozenko, O. Solovev, \emph{Lagrangian chiral coset construction of heterotic string theories in $(1,0)$ superspace}, Nucl.Phys. B362 (1991) 199-231 (\href{http://inspirehep.net/record/314337/?ln=en}{spire}) \end{itemize} Discussion relating this to equivariant [[elliptic genera]] is in section 7 of \begin{itemize}% \item [[Jacques Distler]], [[Eric Sharpe]], \emph{Heterotic compactifications with principal bundles for general groups and general levels}, Adv. Theor. Math. Phys. 14:335-398, 2010 (\href{http://arxiv.org/abs/hep-th/0701244}{arXiv:hep-th/0701244}) \end{itemize} Review of this includes \begin{itemize}% \item [[Eric Sharpe]], \emph{Recent developments in heterotic compactifications}, in [[Eric Sharpe]], [[Arthur Greenspoon]], \emph{\href{http://www.ams.org/bookstore-getitem/item=AMSIP-44}{Advances in String Theory: The First Sowers Workshop in Theoretical Physics}}, AMS 2008 (\href{http://www.phys.vt.edu/sowers/talks/sharpe-sowers.pdf}{pdf slides (39-49)}) \end{itemize} The corresponding [[elliptic genera]] had been considered in \begin{itemize}% \item [[Matthew Ando]], \emph{The sigma orientation for analytic circle-equivariant elliptic cohomology}, Geom. Topol. 7 (2003) 91-153 (\href{http://arxiv.org/abs/math/0201092}{arXiv:math/0201092}) \end{itemize} and with more emphasis on [[equivariant elliptic cohomology]] in \begin{itemize}% \item [[Matthew Ando]], \emph{Equivariant elliptic cohomology and the Fibered WZW models of Distler and Sharpe}, \href{http://www.math.ucsb.edu/~drm/GTPseminar/2007-fall.php}{talk 2007} (\href{http://www.math.ucsb.edu/~drm/GTPseminar/notes/20071026-ando/20071026-malmendier.pdf}{lecture notes pdf}) \end{itemize} The discussion of the relevant [[Heisenberg n-group]] theory is in \begin{itemize}% \item [[Domenico Fiorenza]], [[Chris Rogers]], [[Urs Schreiber]], \emph{[[schreiber:Higher geometric prequantum theory]]}, 2013 (\href{http://arxiv.org/abs/1304.0236}{arXiv:1304.0236}) \end{itemize} with more details in \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:Obstruction theory for parameterized higher WZW terms]]} \item [[Urs Schreiber]], section ``definite forms'' in \emph{[[schreiber:differential cohomology in a cohesive topos]]} \end{itemize} General [[schreiber:∞-Wess-Zumino-Witten theory]] is set up in section 6 of \begin{itemize}% \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:The brane bouquet|Super Lie n-algebra extensions, higher WZW models and super p-branes with tensor multiplet fields]]}, 2013 (\href{http://arxiv.org/abs/1308.5264}{arXiv:1308.5264}) \end{itemize} [[!redirects parameterized WZW models]] [[!redirects parameterized Wess-Zumino-Witten model]] [[!redirects parameterized Wess-Zumino-Witten models]] [[!redirects parametrized WZW model]] [[!redirects parametrized WZW models]] [[!redirects parametrized Wess-Zumino-Witten model]] [[!redirects parametrized Wess-Zumino-Witten models]] [[!redirects fibered WZW model]] [[!redirects fibered WZW models]] [[!redirects fibered Wess-Zumino-Witten model]] [[!redirects fibered Wess-Zumino-Witten models]] [[!redirects parameterized WZW term]] [[!redirects parameterized WZW terms]] [[!redirects definite parameterization of WZW term]] [[!redirects definite parameterization of WZW terms]] [[!redirects definite parameterization of higher WZW term]] [[!redirects definite parameterization of higher WZW terms]] [[!redirects definite parameterizations of higher WZW terms]] \end{document}