\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{parametric right adjoint} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{generic_morphisms}{Generic morphisms}\dotfill \pageref*{generic_morphisms} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{free_categories}{Free categories}\dotfill \pageref*{free_categories} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $T\colon A\to B$ be a [[functor]] such that $A$ has a [[terminal object]] $1$. Then $T$ can canonically be factored as the composite \begin{displaymath} A \overset{T_1}{\to} B/T1 \overset{\Sigma_{T1}}{\to} B \end{displaymath} of $T$ applied to the [[slice category]] $A \simeq A/1$, followed by [[dependent sum]] (projection on the source). We say that $T$ is a \textbf{parametric right adjoint}, or \textbf{p.r.a.}, if the functor $T_1$ is a [[right adjoint]]. Parametric right adjoints are also called \textbf{local right adjoints}. A [[monad]] is called \textbf{p.r.a.} if its functor part is p.r.a. and moreover its unit and multiplication are [[cartesian natural transformation|cartesian]]. Thus in particular it is a [[cartesian monad]]. A p.r.a. monad is also called a \textbf{strongly cartesian monad}. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{itemize}% \item Since $\Sigma_{T1}$ [[created limit|creates]] [[connected limits]], if $T$ is p.r.a. then it [[preserved limit|preserves]] connected limits, and in particular preserves [[pullbacks]]. It follows that any p.r.a. monad is a [[cartesian monad]]. \item Conversely, an [[accessible functor]] between [[presheaf categories]] is p.r.a. if and only if it preserves [[connected limits]]. \item Any [[polynomial functor]] $\Sigma_h \Pi_g f^*$ is p.r.a., since then $T_1$ can be identified with $\Pi_g f^*$, which has the left adjoint $\Sigma_f \; g^*$. \item If $E$ is a [[presheaf category]] and $T\colon E \to Set$ is p.r.a., then the [[comma category]] $Set/T$ (also called the [[Artin gluing]] in this context) is again a presheaf category. Conversely, if $Set/T$ is a presheaf category, then $T$ preserves connected limits, and thus is p.r.a. if it is accessible. \end{itemize} \hypertarget{generic_morphisms}{}\subsection*{{Generic morphisms}}\label{generic_morphisms} Central to the theory of parametric right adjoints is the notion of \emph{$T$-generic} morphisms. For any functor $T$, a morphism $f\colon B\to T A$ is (strictly) \textbf{$T$-generic} if any commutative square of the following form: \begin{displaymath} \itexarray{B & \overset{\alpha}{\to} &T X \\ ^f\downarrow && \downarrow^{T\gamma}\\ T A& \underset{T \beta}{\to} & T Z} \end{displaymath} has a unique filler of the form $T\delta : T A \to T X$. A \textbf{generic factorization} of a map $f\colon B\to T A$ is a factorization \begin{displaymath} B \overset{g}{\to} T D \overset{T h}{\to} T A \end{displaymath} such that $g$ is $T$-generic. Note that by the definition of genericity, generic factorizations are unique whenever they exist. If $T$ is a monad and any map $B \to T A$ has a generic factorization, then there is an induced [[orthogonal factorization system]] on the [[Kleisli category]] of $T$ in which $T$-generic maps are the left class and the right class are the ``free'' maps, i.e. those which factor through the unit of $T$. \begin{uprop} A functor $T$ is a parametric right adjoint iff every map $B\to T A$ has a generic factorization. \end{uprop} \begin{proof} This is Proposition 2.6 of \hyperlink{Weber08}{(Weber08)}. \end{proof} P.r.a. functors between presheaf categories have an especially nice form. \begin{uprop} A functor $T\colon [I^{op},Set] \to [J^{op},Set]$ between presheaf categories is p.r.a. iff any map $y(j)\to T 1$ has a generic factorization, where $y(j)$ is the representable presheaf on an object $j\in J$. \end{uprop} \begin{proof} This is Proposition 2.10 of ``Familial 2-functors and parametric right adjoints.'' The ``only if'' direction is the previous proposition, while for the ``if'' direction, the given hypothesis allows us to define the functor \begin{displaymath} E_T \colon y/T1 \to [I^{op},Set] \end{displaymath} sending an object $(y(j) \to T 1)$ to the object occurring in its generic factorization. Note that $y/T1$ is equivalently the opposite of the [[category of elements]] of $T1$. The definition of genericity, along with the Yoneda lemma, then shows that \begin{displaymath} T(Z)(j) = \coprod_{x\in T1(j)} [I^{op},Set](E_T(x),Z) \end{displaymath} which preserves connected limits, since it is a coproduct of representables. \end{proof} In particular, a p.r.a. functor $T\colon [I^{op},Set] \to [J^{op},Set]$ is determined by giving the object $T1\in [J^{op},Set]$ together with the functor $E_T\colon y/T1 = el(T1)^{op} \to [I^{op},Set]$. We can think of $T1(j)$ as the setof all possible ``shapes'' which $T$ allows us to ``glue together'' to obtain an element of shape $j$, and $E_T$ as specifying exactly what each of those shapes looks like. Then the above formula for $T(Z)(j)$ says that we look at all possible shapes $x\in T1(j)$ we can glue to get something of shape $j$, and for each such $x$ we look at all the ``diagrams'' in $Z$ of the corresponding shape $E_T(x)$. We can extract from this a description that is clearly a generalization of a [[polynomial functor]]. \begin{uprop} A functor $T\colon [I^{op},Set] \to [J^{op},Set]$ between presheaf categories is p.r.a. iff when expressed in terms of [[discrete fibrations]], it is the composite \begin{displaymath} DFib/I \xrightarrow{d^*} DFib/E \xrightarrow{c_*} DFib/K \xrightarrow{p_!} DFib/J \end{displaymath} for a polynomial in $Cat$ \begin{displaymath} I \xleftarrow{d} E \xrightarrow{c} K \xrightarrow{p} J \end{displaymath} where $p$ is a discrete fibration and $(d,c)$ is a [[two-sided discrete fibration]] (with in particular $d$ a discrete fibration and $c$ a discrete opfibration). \end{uprop} \begin{proof} Let $p$ be the [[Grothendieck construction]] of $T1$, so that $K = el(T1)^{op}$, and $(d,c)$ the two-sided Grothendieck construction of $E_T\colon el(T1)^{op} \to [I^{op},Set]$ regarded as a profunctor from $K$ to $I$. The above formula tells us that $T = Lan_p \circ Hom(E_T,-)$, and when rewritten in terms of discrete fibrations this gives the above formula. More details are in Remark 2.12 of \hyperlink{Weber08}{(Weber08)}. \end{proof} That is, a p.r.a. functor between presheaf categories is the restriction to discrete fibrations of a certain kind of polynomial functor between slices of $Cat$. When $I$ and $J$ are discrete categories, then so are $K$ and $E$, so that p.r.a. functors between presheaf categories are a direct generalization of polynomial functors between slices of $Set$. But on the other hand, we can also say that polynomial functors between slices of \emph{Cat} are a direct generalization of p.r.a. functors between presheaf categories. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{free_categories}{}\subsubsection*{{Free categories}}\label{free_categories} Consider the [[free category]] monad $T$ on the category $Quiv$ of [[quivers]], such that $T A$ is the quiver with the same objects as $A$ and whose arrows are finite composable strings of arrows in $A$.. Here $T 1$ is the monoid $\mathbb{N}$ regarded as a one-object category, and thus an object of $Quiv/T1$ is a quiver together with a natural number assigned to each edge. For any quiver $A$, the natural augmentation $T A \to T 1$ assigns to each composable string of arrows its length. The left adjoint of this functor $T_1\colon Quiv \to Quiv/T1$ takes as input a quiver with natural number ``lengths'' assigned to each of its arrows, and creates a new quiver by gluing together a copy of the quiver $[n] = (0 \to 1 \to\dots \to n)$ (with no arrows other than those drawn) for each arrow of ``length'' $n$. Thus $T$ is a parametric right adjoint. $Quiv$ is of course a presheaf category $[Q^{op},Set]$, where $Q$ is the category $0 \rightrightarrows 1$. The category $y/T1$, i.e. the opposite of the category of elements of $T1$, has objects $\mathbb{N} \sqcup \{\bot\}$ and nonidentity arrows $\bot \rightrightarrows n$ for all $n\in\mathbb{N}$. Finally, the functor $E_T \colon y/T1 \to Quiv$ sends $\bot$ to the quiver with one object and no arrows, and $n$ to the quiver $[n] = (0 \to 1 \to\dots \to n)$ described above. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Aurelio Carboni]] and [[Peter Johnstone]], \emph{Connected limits, familial representability and Artin glueing}, \href{http://www.ams.org/mathscinet-getitem?mr=1377312}{MR} \item [[Mark Weber]], \emph{Generic morphisms, parametric representations, and weakly cartesian monads}, Theory and applications of categories, 13:191--234, 2004. \href{http://www.tac.mta.ca/tac/volumes/13/14/13-14abs.html}{link} \item [[Mark Weber]], \emph{Familial 2-functors and parametric right adjoints}, 2008 \href{http://www.tac.mta.ca/tac/volumes/18/22/18-22abs.html}{link} \end{itemize} \begin{itemize}% \item [[Clemens Berger]], [[Paul-André Melliès]], [[Mark Weber]], \emph{Monads with Arities and their Associated Theories} (2011) (\href{http://arxiv.org/abs/1101.3064}{arXiv:1101.3064}) \end{itemize} [[!redirects parametric right adjoints]] [[!redirects p.r.a. functor]] [[!redirects p.r.a. functors]] [[!redirects p.r.a. monad]] [[!redirects p.r.a. monads]] [[!redirects local right adjoint]] [[!redirects local right adjoints]] [[!redirects strongly cartesian monad]] [[!redirects strongly cartesian monads]] \end{document}