\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{parametrized spectrum} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{bundles}{}\paragraph*{{Bundles}}\label{bundles} [[!include bundles - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{goodwillie_calculus}{}\paragraph*{{Goodwillie calculus}}\label{goodwillie_calculus} [[!include Goodwillie calculus - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{as_comodule_spectra}{As (co)module spectra}\dotfill \pageref*{as_comodule_spectra} \linebreak \noindent\hyperlink{SixOperationsYoga}{Six operations yoga}\dotfill \pageref*{SixOperationsYoga} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{parameterized spectrum} is a [[bundle]] of [[spectra]] (\hyperlink{MaySigurdsson06}{May-Sigurdsson 06}), hence a [[stable homotopy type]] in [[parameterized homotopy theory]]. Specifically, for $X$ a [[homotopy type]] thought of as an [[∞-groupoid]], then a spectrum parameterized over $X$ is equivalently an [[(∞,1)-functor]] $X \longrightarrow Spec$ from $X$ to the [[stable (∞,1)-category of spectra]] (\hyperlink{AndoBlumbergGepner11}{Ando-Blumberg-Gepner 11}): this assigns to each [[object]] of $X$ a [[spectrum]], to each [[morphism]] an [[equivalence in an (infinity,1)-category|equivalence]] of spectra, to each [[2-morphism]] a [[homotopy]] between such equivalences, and so forth. More generally, given an [[(∞,1)-topos]] $\mathbf{H}$, then its [[tangent (∞,1)-topos]] $T\mathbf{H}$ is the [[(∞,1)-category]] of all [[spectrum objects]] in $\mathbf{H}$ parameterized over any object of $\mathbf{H}$ (an observation promoted by [[Joyal]]). The intrinsic [[cohomology]] of such a [[tangent (∞,1)-topos]] of parameterized spectra is [[twisted generalized cohomology]] in $\mathbf{H}$, and generally is [[twisted bivariant cohomology]] in $\mathbf{H}$. For more see also at \emph{[[tangent cohesive (∞,1)-topos]]}. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{as_comodule_spectra}{}\subsubsection*{{As (co)module spectra}}\label{as_comodule_spectra} For $X$ a connected homotopy type, then the $X$-parameterized spectra are equivalently the [[module spectra]] over the [[∞-group ∞-ring]] $\mathbb{S}[\Omega X]$ of the [[∞-group]] corresponding to the [[loop space]]. To see this, use first that $X$-parameterized spectra are equivalently [[∞-functors]] of [[(∞,1)-categories]] of the form \begin{displaymath} B \Omega X \longrightarrow Spectra \end{displaymath} from the [[delooping]] [[∞-groupoid]] of $\Omega X$ to the [[(∞,1)-category of spectra]], then use that these are equivalenty Spectrum [[enriched functors]] out of the one-object spectrum enriched $\infty$-category with hom-spectrum $\mathbb{S}[\Omega X] \simeq \Sigma^\infty_+ \Omega X$. Moreover $\mathbb{S}[\Omega X]$-[[module spectra]] are equivalent to [[comodule spectra]] over the coalgebra $\mathbb{S}[X] = \Sigma^\infty_+ X$ induced from the [[coalgebra object]] structure of $X$ in the [[Cartesian monoidal (∞,1)-category]] [[∞Grpd]] via the [[diagonal]] (\href{cartesian+monoidal+infinity%2C1-category#CoalgebraObjects}{here}), and using that $\Sigma^\infty$ is a [[strong monoidal functor]]: \begin{displaymath} CoModSpectra_{\mathbb{S}[X]} \;\simeq\; ModSpectra_{\mathbb{S}[\Omega X]} \end{displaymath} (\hyperlink{HessShipley14}{Hess-Shipley 14, theorem 1.2 with prop. 5.18}) See also at \emph{[[A-theory]]}. \hypertarget{SixOperationsYoga}{}\subsubsection*{{Six operations yoga}}\label{SixOperationsYoga} For any map $f\colon X\longrightarrow Y$ between [[∞-groupoids]], the parameterized spectra form a [[Wirthmüller context]] version of the [[yoga of six functors]], in that \begin{displaymath} [X,Spectra] \stackrel{\overset{f_!}{\longrightarrow}}{\stackrel{\overset{f^\ast}{\longleftarrow}}{\underset{f_\ast}{\longrightarrow}}} [Y,Spectra] \end{displaymath} in that $f^\ast$ is not only a [[strong monoidal functor]] but also a [[strong closed functor]], hence that [[Frobenius reciprocity]] holds. Moreover, along ([[cospan|co-]])[[spans]] of morphisms pull-push $(f_!\dashv f^\ast)$ satisfies the [[Beck-Chevalley condition]] (\hyperlink{HopkinsLurie14}{Hopkins-Lurie 14, prop. 4.3.3}). One way to summarize all this is to say that parameterized spectra over [[∞Grpd]] constitute a [[linear homotopy type theory]] (\hyperlink{Schreiber14}{Schreiber 14}). \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} In [[twisted cohomology]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[excisive functor]] \item [[tangent (infinity,1)-category]] \item [[sheaf of spectra]] \item [[rational parameterized stable homotopy theory]] \item [[ex-space]] \item the [[K-theory]] of spectra parameterized over a connected $X$ is the \emph{[[A-theory]]} of $X$. \item [[twisted differential cohomology]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} Parameterized spectra over a fixed base (in any suitable [[model category]]) are discussed in \begin{itemize}% \item [[Stefan Schwede]], section 3 of \emph{Spectra in model categories and applications to the algebraic cotangent complex}, Journal of Pure and Applied Algebra 120 (1997) 104 (\href{http://www.math.uni-bonn.de/people/schwede/modelspec.pdf}{pdf}) \end{itemize} A comprehensive textbook account on parameterized spectra in [[∞Grpd]] $\simeq$ $L_{whe}$[[Top]] is in \begin{itemize}% \item [[Peter May]], J. Sigurdsson, \emph{[[Parametrized Homotopy Theory]]}, 2006 \end{itemize} A formulation of aspects of this in [[(∞,1)-category theory]] is in \begin{itemize}% \item [[Matthew Ando]], [[Andrew Blumberg]], [[David Gepner]], \emph{Parametrized spectra, multiplicative Thom spectra, and the twisted Umkehr map}, Geom. Topol. 22 (2018) 3761-3825 (\href{http://arxiv.org/abs/1112.2203}{arXiv:1112.2203}) \end{itemize} Discussion of convenient [[model category]] [[presentable (infinity,1)-category|presentations]]: \begin{itemize}% \item [[Vincent Braunack-Mayer]], \emph{Combinatorial parametrised spectra}, based on the [[schreiber:thesis Braunack-Mayer|PhD thesis]] (\href{https://arxiv.org/abs/1907.08496}{arXiv:1907.08496}) \end{itemize} See also the further references at \emph{[[(∞,1)-module bundle]]}. Discussion of the [[Beck-Chevalley condition]] is in prop. 4.3.3 of \begin{itemize}% \item [[Michael Hopkins]], [[Jacob Lurie]], \emph{[[Ambidexterity in K(n)-Local Stable Homotopy Theory]]} \end{itemize} Discussion of the Kozul duality between $\mathbb{S}[\Omega X]$-module spectra and $\mathbb{S}[X]$-comodule spectra is in \begin{itemize}% \item [[Kathryn Hess]], [[Brooke Shipley]], \emph{Waldhausen K-theory of spaces via comodules}, Advances in Mathematics 290 (2016): 1079-1137 (\href{https://arxiv.org/abs/1402.4719}{arXiv:1402.4719}) \end{itemize} Discussion as a [[linear homotopy type theory]] is in \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:Quantization via Linear homotopy types]]} (\href{http://arxiv.org/abs/1402.7041}{arXiv:1402.7041}) \end{itemize} [[!redirects parametrized spectra]] [[!redirects parameterized spectrum]] [[!redirects parameterized spectra]] [[!redirects parametrised spectrum]] [[!redirects parametrised spectra]] [[!redirects spectrum bundle]] [[!redirects spectrum bundles]] [[!redirects bundle of spectra]] [[!redirects bundles of spectra]] \end{document}