\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{partition of unity} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{existence_on_paracompact_topological_spaces}{Existence on paracompact topological spaces}\dotfill \pageref*{existence_on_paracompact_topological_spaces} \linebreak \noindent\hyperlink{ExistenceOnSmoothManifolds}{Existence on smooth manifolds}\dotfill \pageref*{ExistenceOnSmoothManifolds} \linebreak \noindent\hyperlink{from_a_nonpoint_finite_partition_of_unity_to_a_partition_of_unity}{From a non-point finite partition of unity to a partition of unity}\dotfill \pageref*{from_a_nonpoint_finite_partition_of_unity_to_a_partition_of_unity} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{maps_to_geometric_realizations}{Maps to geometric realizations}\dotfill \pageref*{maps_to_geometric_realizations} \linebreak \noindent\hyperlink{CechCoboundaries}{Coboundaries for Cech cocycles}\dotfill \pageref*{CechCoboundaries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{partition of unity} is a [[partition]] of the unit function on a [[topological space]] into a sum of continuous functions that are each non-zero only on small parts of the space. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $X$ be a [[topological space]]. A (point finite) \textbf{partition of unity} on $X$ is a collection $\{u_j\}_{j \in J}$ of [[continuous functions]] $u_j \colon X \to [0,1]$, $j\in J$ to the [[closed interval]] with its [[Euclidean space|Euclidean]] [[metric topology]] such that \begin{enumerate}% \item For each $x\in X$, there is only a [[finite number]] of $j\in J$ such that $u_j(x) \neq 0$ (point finiteness condition); \item $\sum_{j \in J} u_j(x) = 1$ for all $x\in X$. \end{enumerate} A partition of unity defines an [[open cover]] of $X$, consisting of the open sets $u_j^{-1}(0,1]$. Call this the \textbf{induced cover}. Sometimes (rarely) the condition that $\{u_j\}_J$ is point finite is dropped. In this case we refer to a \emph{non-point finite} partition of unity (see [[red herring principle]]). In this case for each point of $X$ at most countably-many of the functions $u_j$ are non-zero, and we have to interpret the sum in 1. above as being a [[convergence|convergent]] infinite [[series]]. Given a [[cover]] $\mathcal{U} = \{U_j\}_{j\in J}$ of a [[topological space]] ([[open cover]] or closed or neither), the partition of unity $\{u_j\}_J$ is \textbf{subordinate} to $\mathcal{U}$ if for all $j\in J$, \begin{displaymath} \overline{u_j^{-1}(0,1]} \subset U_j. \end{displaymath} What this means is that the open sets $u_j^{-1}(0,1]$ form an open cover \emph{refining} the cover $\mathcal{U}$. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{PartitionOfUnityOnTheRealLine}\hypertarget{PartitionOfUnityOnTheRealLine}{} Consider $\mathbb{R}$ with its [[Euclidean space|Euclidean]] [[metric topology]]. Let $\epsilon \in (0,\infty)$ and consider the [[open cover]] \begin{displaymath} \{ (n-1-\epsilon , n+1 + \epsilon) \subset \mathbb{R} \}_{n \in \mathbb{Z} \subset \mathbb{R} } \,. \end{displaymath} Then a partition of unity $\{ f_n \colon \mathbb{R} \to [0,1] \}_{n \in \mathbb{N}}$ subordinate to this cover is given by \begin{displaymath} f_n(x) \coloneqq \left\{ \itexarray{ x - (n - 1) &\vert& n - 1 \leq x \leq n \\ 1- (x-n) &\vert& n \leq x \leq n+1 \\ 0 &\vert& \text{otherwise} } \right\} \,. \end{displaymath} \end{example} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{existence_on_paracompact_topological_spaces}{}\subsubsection*{{Existence on paracompact topological spaces}}\label{existence_on_paracompact_topological_spaces} \begin{prop} \label{ParacompactHausdorffEquivalentToexistenceOfParititionsOfUnity}\hypertarget{ParacompactHausdorffEquivalentToexistenceOfParititionsOfUnity}{} \textbf{([[paracompact Hausdorff spaces equivalently admit subordinate partitions of unity]])} Assuming the [[axiom of choice]] then: Let $(X,\tau)$ be a [[topological space]]. Then the following are equivalent: \begin{enumerate}% \item $(X,\tau)$ is a [[paracompact Hausdorff space]]. \item Every [[open cover]] of $(X,\tau)$ admits a subordinate partition of unity. \end{enumerate} \end{prop} Similarly [[normal spaces]] are equivalently those such that every [[locally finite cover]] has a subordinate partition of unity (reference Bourbaki, Topology Generale - find this!) \hypertarget{ExistenceOnSmoothManifolds}{}\subsubsection*{{Existence on smooth manifolds}}\label{ExistenceOnSmoothManifolds} Paracompact [[smooth manifolds]] even have \emph{smooth} partitions of unity subordinate to any open cover (this follows from the existence of a smooth [[bump function]] on $[-1,1]$). It is not true, however, that [[analytic manifolds]] have analytic partitions of unity - the aforementioned [[bump function]] is smooth but not analytic: \begin{lemma} \label{SmoothManifoldClosedBallRefinementOfCover}\hypertarget{SmoothManifoldClosedBallRefinementOfCover}{} \textbf{([[open cover]] of [[smooth manifold]] admits [[locally finite cover|locally finite]] [[refinement]] by [[closed balls]])} Let $X$ be a [[smooth manifold]] and let $\{U_i \subset X\}_{i \in I}$ be an [[open cover]]. Then there exists cover \begin{displaymath} \left\{ B_0(\epsilon_j) \underoverset{\simeq}{\psi_j}{\to} V_j \subset X \right\}_{i \in J} \end{displaymath} which is a [[locally finite cover|locally finite]] [[refinement]] of $\{U_i \subset X\}_{i \in I}$ with each patch [[diffeomorphism|diffeomorphic]] to a [[closed ball]] in [[Euclidean space]]. \end{lemma} \begin{proof} First consider the special case that $X$ is [[compact topological space]]. Let \begin{displaymath} \left\{ \mathbb{R}^n \underoverset{\simeq}{\phi_j}{\longrightarrow} V_j \subset X \right\} \end{displaymath} be a smooth [[atlas]] representing the [[smooth structure]] on $X$. The [[intersections]] \begin{displaymath} \left\{ U_i \cap V_j \right\}_{i \in I, j \in J} \end{displaymath} still form an open cover of $X$. Hence for each point $x \in X$ there is $i \in I$ and $j \in J$ with $x \in U_i \cap V_j$. By the nature of the [[Euclidean topology]], there exists a [[closed ball]] $B_x$ around $\phi_j^{-1}(x)$ in $\phi_j^{-1}(U_i \cap V_j) \subset \mathbb{R}^n$. Its [[image]] $\phi_j(B_x) \subset X$ is a neighbourhood of $x \in X$ diffeomorphic to a closed ball. The [[interiors]] of these balls form an [[open cover]] \begin{displaymath} \left\{ Int(B_x) \subset X \right\}_{x \in X} \end{displaymath} of $X$ which, by construction, is a refinement of $\{U_i \subset X\}_{i \in I}$. By the assumption that $X$ is compact, this has a finite subcover \begin{displaymath} \left\{ Int(B_l) \subset X \right\}_{l \in L} \end{displaymath} for $L$ a [[finite set]]. Hence \begin{displaymath} \left\{ B_l \subset X \right\}_{l \in L} \end{displaymath} is a finite cover by closed balls, hence in particular locally finite, and by construction it is still a refinement of the orignal cover. This shows the statement for $X$ compact. Now for general $X$, notice that without restriction we may assume that $X$ is [[connected topological space|connected]], for if it is not, then we obtain the required refinement on all of $X$ by finding one on each [[connected component]]. But if a locally Euclidean paracompact Hausdorff space $X$ is connected, then it is [[sigma-compact topological space|sigma-compact]] and in fact admits a countable increasing exhaustion \begin{displaymath} V_0 \subset V_1 \subset V_2 \subset \cdots \end{displaymath} by [[open subsets]] whose [[topological closures]] \begin{displaymath} K_0 \subset K_1 \subset K_2 \subset \cdots \end{displaymath} exhaust $X$ by [[compact topological space|compact]] subspaces $K_n$ (by the proof of \href{topological+manifold#RegularityConditionsForTopologicalManifoldsComparison}{this prop.}). For $n \in \mathbb{N}$, consider the open subspace \begin{displaymath} V_{n+2} \setminus K_{n-1} \;\subset\; X \end{displaymath} which canonically inherits the structure of a smooth manifold (\href{differentiable+manifold#OpenSubsetsOfDifferentiableManifoldsAreDifferentiableManifolds}{this prop.}). As above we find a refinement of the restriction of $\{U_i \subset X\}_{i \in I}$ to this open subset by closed balls and since the further subspace $K_{n+1}\setminus K_n$ is still compact (by \href{compact+space#UnionsAndIntersectionOfCompactSubspaces}{this lemma}) there is a finite set $L_n$ such that \begin{displaymath} \{B_{l_n} \subset V_{n+2} \setminus K_{n-1} \subset X \}_{l_n \in L_n} \end{displaymath} is a finite cover of $K_{n+1} \setminus K_n$ by closed balls refining the original cover. It follows that the union of all these \begin{displaymath} \left\{ B_{l_n} \subset X \right\}_{n \in \mathbb{N}, l_n \in L_n} \end{displaymath} is a refinement by closed balls as required. Its local finiteness follows by the fact that each $B_{l_n}$ is contained in the ``strip'' $V_{n+2} \setminus K_{n-1}$, each strip contains only a finite set of $B_{l_n}$-s and each strip intersects only a finite number of other strips. (Hence an open subset around a point $x$ which intersects only a finite number of elements of the refined cover is given by any one of the balls $B_{l_n}$ that contain $x$.) \end{proof} \begin{prop} \label{SmoothManifoldAdmitsSmoothPartitionsOfUnity}\hypertarget{SmoothManifoldAdmitsSmoothPartitionsOfUnity}{} \textbf{([[smooth manifolds]] admit smooth partitions of unity)} Let $X$ be a paracompact [[smooth manifold]]. Then every [[open cover]] $\{U_i \subset X\}_{i \in I}$ has a subordinate partition of unity by functions $\{f_i \colon U_i \to \mathbb{R}\}_{i \in I}$ which are \emph{[[smooth functions]]}. \end{prop} \begin{proof} By lemma \ref{SmoothManifoldClosedBallRefinementOfCover} the given cover has a [[locally finite cover|locally finite]] [[refinement]] by [[closed subsets]] [[diffeomorphism|diffeomorphic]] to [[closed balls]]: \begin{displaymath} \left\{ B_0(\epsilon_j) \underoverset{\simeq}{\psi_j}{\to} V_j \subset X \right\}_{j \in J} \,. \end{displaymath} Given this, let \begin{displaymath} h_j \;\colon\; X \longrightarrow \mathbb{R} \end{displaymath} be the function which on $V_j$ is given by a smooth [[bump function]] \begin{displaymath} b_j \;\colon\; \mathbb{R} \longrightarrow \mathbb{R} \end{displaymath} with [[support]] $supp(b_j) = B_0(\epsilon_j)$: \begin{displaymath} h_j \;\colon\; x \mapsto \left\{ \itexarray{ b_j(\psi_j^{-1}(x)) &\vert& x \in V_j \\ 0 &\vert& \text{otherwise} } \right. \,. \end{displaymath} By the nature of [[bump functions]] this is indeed a [[smooth function]] on all of $X$. By local finiteness of the cover by closed balls, the function \begin{displaymath} h \;\colon\; X \longrightarrow \mathbb{R} \end{displaymath} given by \begin{displaymath} h(x) \coloneqq \underset{j \in J}{\sum} h_j(x) \end{displaymath} is well defined (the sum involves only a finite number of non-vanishing contributions) and is smooth. Therefore setting \begin{displaymath} f_j \;\coloneqq\; \frac{h_j}{h} \end{displaymath} then \begin{displaymath} \left\{ f_j \right\}_{j \in J} \end{displaymath} is a subordinate partition of unity by smooth functions as required. \end{proof} \hypertarget{from_a_nonpoint_finite_partition_of_unity_to_a_partition_of_unity}{}\subsubsection*{{From a non-point finite partition of unity to a partition of unity}}\label{from_a_nonpoint_finite_partition_of_unity_to_a_partition_of_unity} \begin{defn} \label{}\hypertarget{}{} A collection of functions $\mathcal{U} = \{u_i : X \to [0,1]\}$ such that every $x\in X$ is in the support of some $u_i$. Then $\mathcal{U}$ is called \emph{locally finite} if the cover $u_i^{-1}(0,1]$ (i.e. the induced cover) is [[locally finite cover|locally finite]]. \end{defn} \begin{prop} \label{}\hypertarget{}{} (Mather, 1965) Let $\{u_i\}_J$ be a non-point finite partition of unity. Then there is a locally finite partition of unity $\{v_i\}_{i\in J}$ such that the induced cover of the latter is a refinement of the induced cover of the former. \end{prop} (For a proof, see p.354 of Dold's Lectures on algebraic topology. \href{https://books.google.com.au/books?id=4AmzD9XhGDkC&lpg=PA354&vq=locally%20finite%20oartition%20unity&pg=PA354#v=onepage&q&f=false}{Google books link to page 354}, which may or may not be visible) This implies that (loc. finite) [[numerable covers]] are cofinal in induced covers arising from collections of functions as in the definition. In particular, given the [[Milnor classifying space]] $\mathcal{B}^M G$ of a [[topological group]] $G$, which comes with a countable family of `coordinate functions' $\mathcal{B}^M G \to [0,1]$, has a numerable cover. This is shown by Dold to be a trivialising cover for the universal bundle constructed by Milnor, and so the universal bundle is [[numerable bundle|numerable]]. \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \hypertarget{maps_to_geometric_realizations}{}\subsubsection*{{Maps to geometric realizations}}\label{maps_to_geometric_realizations} Partitions of unity can be used in constructing maps from spaces to [[geometric realization]]s of [[simplicial spaces]] (incl. simplicial sets) - for example a [[classifying map]] for a $G$-[[bundle]] where $G$ is a [[Lie group]]. \hypertarget{CechCoboundaries}{}\subsubsection*{{Coboundaries for Cech cocycles}}\label{CechCoboundaries} Partitions of unity can be used to give explicit coboundaries for the cocycles of the complex of functions on a cover. Let $\{U_i \to X\}$ be a [[open cover]] and $\{\rho_i \in C(X,\mathbb{R})\}$ a collection of functions with \begin{itemize}% \item $(x not \in U_i) \Rightarrow \rho_i(x) = 0$ \item $\sum_i \rho_i = const_1$. \end{itemize} Write $C(\{U_i\}) : \Delta^{op} \to Top$ for the [[Cech nerve]] of the cover and $C(C(\{U_i\}), \mathbb{R})$ for the [[cosimplicial ring]] of functions on this [[simplicial object|simplicial]] topological space; and $(C_\bullet(C(\{U_i\}), \mathbb{R}), \delta)$ for the corresponding (normalized) [[Moore complex|cochain complex]]: its differential is the alternating sum of the pullbacks of functions along the face maps, i.e. along the restriction maps \begin{displaymath} \delta = \sum_k (-1)^k \delta_{k}^* \,. \end{displaymath} For instance for $f = \{f_{i_1, i_2, \cdots, i_n} \in C(U_{i_1} \cap \cdots \cap U_{i_{n+1}})\}$ a collection of functions in degree $n$, we have \begin{displaymath} (\delta f)_{i_0 \cdots i_n i_{n+1}} = \sum_{k = 0}^{n+1} (-1)^k f_{i_0 \cdots i_{k-1} i_{k+1} \cdots i_{n+1}} \,. \end{displaymath} This cochain complex has vanishing [[cochain cohomology]] in positive degree. We can explicitly construct corresponding coboundaries using the partion of unity: assume that with the above notation $f$ is a cocycle in positive degree, in that $\delta f = 0$. Then define the $(n-1)$-cochain \begin{displaymath} \lambda_{i_1 \cdots i_n} := \sum_{i_0} \rho_{i_0} f_{i_0 i_1 \cdots i_n} \,. \end{displaymath} Here in the summands on the right the product is defined on $U_{i_0} \cap U_{i_1} \cap \cdots \cap U_{i_n}$ and extended as 0 to all of $U_{i_1} \cap \cdots \cap U_{i_n}$. With this definition we have \begin{displaymath} \delta \lambda = f \,. \end{displaymath} To see this we compute \begin{displaymath} \begin{aligned} (\delta \lambda)_{i_1 \cdots i_{n+1}} & := \sum_{i_0} \rho_{i_0} \sum_{k=1}^n (-1)^k f_{i_0 i_1 \cdots i_{k-1} i_{k+1} \cdots i_{n+1}} \\ & = \pm \sum_{i_0} \rho_{i_0} f_{i_1 \cdots i_{n+1}} \\ & = f_{i_1 \cdots i_{n+1}} \end{aligned} \,, \end{displaymath} where in the second step we used the condition $\delta f = 0$ and in the last step we used the property of the partition of unity. This construction is used a lot in [[Cech cohomology]]. For instance it can be used to show in Chech cocycles that every [[principal bundle]] admits a [[connection on a bundle]] (see there for the details). \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Albrecht Dold]], \emph{Partitions of unity in the theory of fibrations}, Ann. of Math. 78. (1963), 223-255. \item [[Albrecht Dold]], \emph{Lectures on algebraic topology}, Springer Classics in Mathematics (1980), p.354. \item M. Mather, \emph{Paracompactness and partitions of unity}, PhD thesis, Cambridge (1965). \end{itemize} Discussion of partitions of unity in [[constructive mathematics]] is in \begin{itemize}% \item [[Frank Waaldijk]], section 3.1 of \emph{modern intuitionistic topology}, 1996 (\href{http://www.fwaaldijk.nl/modern%20intuitionistic%20topology.pdf}{pdf}) \end{itemize} [[!redirects partition of unity]] [[!redirects partitions of unity]] [[!redirects Partition of unity]] [[!redirects Partitions of unity]] \end{document}