\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{perfect infinity-stack} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-Topos Theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{higher_geometry}{}\paragraph*{{Higher geometry}}\label{higher_geometry} [[!include higher geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{equivalent_reformulations}{Equivalent reformulations}\dotfill \pageref*{equivalent_reformulations} \linebreak \noindent\hyperlink{geometric_function_theory}{Geometric $\infty$-function theory}\dotfill \pageref*{geometric_function_theory} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In the context of [[dg-geometry]] an [[∞-stack]] $X$ is called \emph{perfect} if its [[(∞,1)-category]] $QC(X)$ of [[quasicoherent ∞-stack]]s (of [[module]]s over the [[structure sheaf]] $\mathcal{O}(X)$) is generated from compact objects/dualizable objects: modules that are locally [[perfect chain complex]]es. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $k$ be a [[field]] of [[characteristic]] 0. Let $T$ be the [[Lawvere theory]] of commutative [[associative algebra]]s over $k$. When this is regarded as an [[(∞,1)-algebraic theory]], the $T$-$\infty$-algebras are modeled (by the [[monoidal Dold-Kan correspondence]] equivalently) by the \begin{itemize}% \item [[model structure on simplicial T-algebras]]; \item [[model structure on dg-algebras]] (over $k$, in non-positive degree, with positively graded differential). \end{itemize} The [[higher geometry]]/[[derived geometry]] over formal duals of these algebras is sometimes called [[dg-geometry]]: a general space in this context is given by an [[∞-stack]] over a full sub-[[(∞,1)-site]] \begin{displaymath} C \subset T Alg_\infty^{op} \end{displaymath} of the [[opposite (∞,1)-category]] of these $\infty$-algebras. \begin{udefn} The [[(∞,2)-presheaf]] of [[quasicoherent ∞-stack]]s is \begin{displaymath} Mod : C^{op} \to (\infty,1)Cat \end{displaymath} given by \begin{displaymath} Spec A \mapsto A Mod \,, \end{displaymath} where on the right we take the $(\infty,1)$-category of $\infty$-modules over the $\infty$-algebra $A$, regarded as an unbounded dg-algebra. \end{udefn} \begin{udefn} For $X \in Sh_{(\infty,1)}(C)$ an [[∞-stack]] in [[dg-geometry]], write \begin{displaymath} QC(X) := PSh_{(\infty,2)}(C)\left( X, Mod \right) \end{displaymath} for the $(\infty,1)$-category of \textbf{quasicoherent $\infty$-stacks} on $X$. \end{udefn} \begin{uremark} By the [[co-Yoneda lemma]] we may express every $X \in Sh_{(\infty,1)}(C)$ as an [[(∞,1)-colimit]] of [[representable functor|representables]] \begin{displaymath} X \simeq {\lim_\to}_i U_i = {\lim_\to}_i Spec A_i \,. \end{displaymath} We have then \begin{displaymath} QC(X) \simeq {\lim_\leftarrow}_i QC(U_i) \simeq {\lim_\leftarrow}_i A_i Mod \,. \end{displaymath} \end{uremark} This appears as (\hyperlink{Ben-ZviFrancisNadler}{Ben-ZviFrancisNadler, section 3.1}). \begin{uprop} For all $X \in \mathbf{H}$, we have that $QC(X)$ \begin{itemize}% \item is a [[stable (∞,1)-category]] \item that has all [[(∞,1)-colimit]]s. \end{itemize} \end{uprop} (\hyperlink{Ben-ZviFrancisNadler}{Ben-ZviFrancisNadler, section 3.1}). \begin{udefn} Let $A \in T Alg_\infty$ . An $A$-module is a \textbf{perfect module} if it lies in the smallest [[sub-(∞,1)-category]] of $A Mod$ containing $A$ and closed under finite [[(∞,1)-colimit]]s and [[retract]]s. For a [[∞-stack]] $X \in Sh_{(\infty,1)}(C)$, the $\infty$-category $Perf(X)$ is the full sub-$(\infty,1)$-category of $QC(X)$ consisting of those modules that are prefect over every affine $U\to X$. \end{udefn} This appears as (\hyperlink{Ben-ZviFrancisNadler}{Ben-ZviFrancisNadler, definition 3.1}). \begin{udefn} A [[∞-stack]] $X \in Sh_{(\infty,1)}(C)$ is called a \textbf{perfect stack} if \begin{itemize}% \item it has affine diagonal $X \to X \times X$; \item and $QC(X)$ is the [[ind-object in an (infinity,1)-category|(∞,1)-category of ind-objects]] \begin{displaymath} QC(X) \simeq \Ind \Perf(X) \end{displaymath} of the full [[sub-(∞,1)-category]] $Perf(X) \subset QC(X)$ of perfect complexes of modules on $X$. \end{itemize} A morphism $X \rightarrow Y$ is said to be \textbf{perfect morphism} if its fibers $X \times_Y U$ over affines $U \rightarrow Y$ are perfect. \end{udefn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{equivalent_reformulations}{}\subsubsection*{{Equivalent reformulations}}\label{equivalent_reformulations} \begin{udef} A [[stable (∞,1)-category]] $C$ is \textbf{compactly generated} if it has a [[small set]] $\{c_i\}_{i \in I}$ of [[compact object]] that are [[generator]]s in the sense that if for $N \in C$ we have that $C(c_i, N)$ is equivalent to the [[zero morphism]], then $N$ is the [[zero object]]. \end{udef} \begin{utheorem} For a [[∞-stack]] $X \in Sh_{(\infty,1)}(C)$ with affine diagonal, the following are equivalent: \begin{itemize}% \item $X$ is perfect \item $QC(X)$ is \begin{itemize}% \item compactly generated, \item and its [[compact object|compact]] and [[dualizable object|dualizable]] objects coincide. \end{itemize} \end{itemize} \end{utheorem} \hypertarget{geometric_function_theory}{}\subsubsection*{{Geometric $\infty$-function theory}}\label{geometric_function_theory} The assigmnent \begin{displaymath} QC : X \mapsto QC(X) \end{displaymath} of the $(\infty,2)$-algebras $QC(X)$ of [[quasicoherent ∞-stack]]s to perfect \$$\infty$-stacks $X$ constitutes a [[geometric ∞-function theory]]: this assignment commutes with [[(∞,1)-pullback]]s and admits a ggood pull-push theory of [[integral transforms on sheaves]]. (\hyperlink{Ben-ZviFrancisNadler}{Ben-ZviFrancisNadler} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} Perfect stacks cover a broad array of spaces of interest, with notable exceptions being the ([[constant ∞-stack]] on a) [[classifying space]] $\mathcal{B}G$ of a [[topological group]] $G$ such as the [[circle]] $S^1 \simeq \mathcal{B} \mathbb{Z}$ or the classifying spaces of most [[algebraic group]]s in non-zero [[characteristic]]. This is because if $X$ is perfect, then the [[global section]]s functor $\Gamma$ must preserve colimits, which fails when the global sections $\Gamma(X, \mathcal{O}_X)$ of the structure sheaf is `too large', as in the previous cases. But the following are examples of perfect $\infty$-stacks \begin{itemize}% \item quasi-compact [[derived scheme]]s with affine diagonal; \item the total space of a quasi-projective morphism over a perfect base; \item a quasi-projective [[derived scheme]]; \item the quotient $X/G$ of a quasi-projective [[derived scheme]] $X$ by a linear action of an affine group (for $k$ of [[characteristic]] 0). \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The concept of a \emph{perfect stack} in the context of [[dg-geometry]] is considered in \begin{itemize}% \item [[David Ben-Zvi|Ben-Zvi]], [[John Francis]], [[David Nadler]], \emph{Integral transforms and Drinfeld centers in derived algebraic geometry} (\href{http://arxiv.org/abs/0805.0157}{arXiv}) \end{itemize} [[!redirects perfect infinity-stacks]] [[!redirects perfect ∞-stack]] [[!redirects perfect ∞-stacks]] \end{document}