\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{physical unit} \begin{quote}% under construction \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{UnitsOfLengthInLagrangianFieldTheory}{Units of length in Lagrangian field theory}\dotfill \pageref*{UnitsOfLengthInLagrangianFieldTheory} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} When formulating a [[theory of physics]] in terms of [[mathematics]] one typically models the range of certain physical quantities by [[torsors]] over some [[group]] of transformations. For instance a [[wavelength]] would be identified as element in the [[real line]] minus its origin, $\mathbb{R}-\{0\}$ , being a torsor over the [[multiplicative group]] $\mathbb{R}^\times$ of [[real numbers]]. In order for the ``[[coordination]]'' of the mathematical theory with physical [[experiment]] to take place, one needs to choose an identification of this abstract torsor with the (idealized) one that it is supposed to model in nature. Such a choice is equivalent to a choice of [[unit]] (in the mathematical sense), hence a choice of element of the torsor. In this context this is then a \emph{physical unit}. For instance picking an element in $\mathbb{R}-\{0\}$ and declaring this to be length of the path travelled by light in a vacuum in 1/299 792 458 second means defining a \emph{physical unit of length} (in this example: of the [[meter]]). Physical units are often called \emph{physical constants}. But by definition physical units are arbitrary choices made in the desciption of a physical system. Of course once made, one wants to keep these choices constant, such as to be useful. The actual \emph{constants of nature} are instead quotients of physical units. For instance the [[fine structure constant]] is the [[quotient]] \begin{displaymath} \alpha \coloneqq \frac{e^2}{ (4 \pi \epsilon_0) \hbar c} \in \mathbb{R} \end{displaymath} where $e$ is the [[electric charge]] of the [[electron]] expressed in physical units of charge (such as [[coulomb]]s), $\hbar$ is [[Planck's constant]] etc. The resulting quotient is then independent of any choices and is hence a [[real number]] characterizing nature independently of any conventions about how to parameterize it. Notice that \emph{choice of unit} is also called \emph{choice of gauge}. This is indeed the same ``[[gauge]]'' as in ``[[gauge theory]]'', as it is how (\href{gauge#Weyl23}{Weyl 23}) introduced the concept of gauge theory: as a theory in which the choice of unit of length may change along paths in space. \hypertarget{UnitsOfLengthInLagrangianFieldTheory}{}\subsection*{{Units of length in Lagrangian field theory}}\label{UnitsOfLengthInLagrangianFieldTheory} \begin{quote}% under construction \end{quote} Let $\Sigma \simeq \mathbb{R}^{p,1}$ be [[Minkowski spacetime]] and let $E \overset{fb}{\to} \Sigma$ be a [[fiber bundle]] thought of as a [[field]] bundle. Write $\{\phi^a\}$ for local [[coordinates]] on the typical fiber of this bundle. The total space of the corresponding [[jet bundle]] $J^\infty_\Sigma(E) \overset{jb^\infty}{\to} \Sigma$ carries an [[action]] \begin{displaymath} sc \;\colon\; \mathbb{R}^\times \times J^\infty_\Sigma(E) \longrightarrow J^\infty_\Sigma(E) \end{displaymath} of the multiplicative [[group of units]] $\mathbb{R}^\times$ of the [[real numbers]], given on the induced jet coordinates by \begin{displaymath} \begin{aligned} x^\mu & \mapsto r x^\mu \\ \phi^a & \mapsto \phi^a \\ \phi^a_{,\mu_1, \cdots \mu_k} & \mapsto r^{-k} \phi^a_{,\mu_1 \cdots \mu_k} \end{aligned} \,. \end{displaymath} Let then \begin{displaymath} \mathbf{L}_{(-)} \;\colon\; \mathbb{R}^n \longrightarrow \mathbf{\Omega}^{p+1}(J^\infty_\Sigma(E)) \end{displaymath} be a smoothly $n$-parameterized collection of [[Lagrangian densities]], equipped with an $R^\times$-action \begin{displaymath} scp \;\colon\; \mathbb{R}^\times \times \mathbb{R}^n \longrightarrow \mathbb{R}^n \end{displaymath} on $\mathbb{R}^n$. Observe that the [[Euler-Lagrange equations]] induced by a Lagrangian density $\mathbf{L}$ equal those induced by the rescaled Lagrangian $r \mathbf{L}$, and that the [[presymplectic current]] $\Omega_{BFV}$ induced by $\mathbf{L}$ scales linearly with $r$ itself. Upon [[quantization]], this rescaling of $\Omega_{BFV}$ may be absorbed in [[Planck's constant]]. In conclusion, as long as Lagrangian densities scale \emph{homogeneously} the rescaled Lagrangian induces the same physics. Hence we require that the combined scaling action of $\mathbb{R}^\times$ on $J^\infty_\Sigma(E)$ via $sc$ and on the parameters in $\mathbb{R}^n$ via $scp$ is homogeneous on $\mathbf{L}$ in that there exists $dim \in \mathbb{Z}$ such that for every $r \in \mathbb{R}^\times$ we have \begin{displaymath} sc_r^\ast \mathbf{L}_{( scp(-))} = r^{dim} \mathbf{L}_{(-)} \,. \end{displaymath} Then a parameter $a \colon \mathbb{R}^n \to \mathbb{R}$ such that there exists $w \in \mathbb{Z}$ with \begin{displaymath} scp_r^\ast a = r^{w} a \end{displaymath} is said to have \emph{dimension} $[length]^{w}$. For example the Lagrangian density for the [[free field theory|free]] [[scalar field]] \begin{displaymath} \mathbf{L}_{(-)} \;\colon\; \mathbb{R}^1 \longrightarrow \mathbf{\Omega}^{p+1}(J^\infty_\Sigma(\Sigma \times \mathbb{R}) \end{displaymath} given by \begin{displaymath} \mathbf{L}_{m} \;\coloneqq\; \tfrac{1}{2} \left( \eta^{\mu \nu}\phi_{,\mu} \phi_{,\nu} - m^2 \phi^2 \right) dvol \end{displaymath} is parameterized by the [[mass]] $m$. For the Lagrangian to scale homogenously with $r^{p-1}$ the mass parameter has to have dimension $[length]^{-1}$. To indicate this action one writes the mass in the combination $m c / \hbar$, called the inverse \emph{[[Compton wavelength]]}, so that the homogenously scaling collection of Lagrangians is \begin{displaymath} \mathbf{L}_{m c / \hbar} \;\coloneqq\; \tfrac{1}{2} \left( \eta^{\mu \nu}\phi_{,\mu} \phi_{,\nu} - \left( \tfrac{m c}{\hbar} \right) \phi^2 \right) dvol \end{displaymath} (\ldots{}) \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item [[meter]], [[femtometer]] \item [[electronvolt]], [[MeV]], [[GeV]], [[TeV]] \item [[speed of light]] \item [[Planck's constant]] \item [[gravitational constant]] \item [[Compton wavelength]] \item [[Schwarzschild radius]] \item [[Planck mass]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Discussion in the context of [[philosophy of science]] includes \begin{itemize}% \item [[Georg Hegel]], \href{Science+of+Logic#TheMeasureFirstChapter}{Book I, third section, first chapter} of \emph{[[Science of Logic]]} \end{itemize} [[!redirects physical unit]] [[!redirects physical units]] \end{document}