\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{pointed topological space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{the_category_of_pointed_topological_spaces}{The category of pointed topological spaces}\dotfill \pageref*{the_category_of_pointed_topological_spaces} \linebreak \noindent\hyperlink{ForgettingAndAdjoiningBasepoints}{Forgetting and adjoining basepoints}\dotfill \pageref*{ForgettingAndAdjoiningBasepoints} \linebreak \noindent\hyperlink{wedge_sum_and_smash_product}{Wedge sum and Smash product}\dotfill \pageref*{wedge_sum_and_smash_product} \linebreak \noindent\hyperlink{mapping_cocones}{Mapping (co-)cones}\dotfill \pageref*{mapping_cocones} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{pointed topological space} (often \emph{[[pointed space]]}, for short) is a [[topological space]] equipped with a choice of one of its [[points]] ([[elements]]). Although this concept may seem simple, pointed topological spaces play a central role for instance in [[algebraic topology]] as domains for [[reduced cohomology|reduced]] [[generalized (Eilenberg-Steenrod) cohomology theories]] and as an ingredient for the definition of [[spectra]]. One reason why pointed topological spaces are important is that the [[category]] which they form is an intermediate stage in the [[stabilization]] of [[homotopy theory]] (the [[classical model structure on topological spaces|classical homotopy theory of topological spaces]]) to [[stable homotopy theory]]: The category of pointed topological spaces has a [[zero object]] (the [[point space]] itself) and the canonical [[tensor product]] on pointed spaces is the \emph{[[smash product]]}, which is non-[[cartesian monoidal category]], in contrast to the plain [[product space|product of topological space]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \emph{pointed topological space} is a [[topological space]] $(X,\tau)$ equipped with a choice of point $x \in X$. A [[homomorphism]] between pointed topological space $(X,x)$ $(Y,y)$ is a [[continuous function]] $f \colon X \to Y$ which preserves the chosen basepoits in that $f(x) = y$. \hypertarget{the_category_of_pointed_topological_spaces}{}\subsubsection*{{The category of pointed topological spaces}}\label{the_category_of_pointed_topological_spaces} Stated in the language of [[category theory]], this means that pointed topological spaces are the \emph{[[pointed objects]]} in the [[category]] [[Top]] of topological spaces. This is the [[coslice category]] $Top^{\ast/}$ of topological spaces ``under'' the [[point space]] $\ast$: an [[object]] in $Top^{\ast/}$ is equivalently a [[continuous function]] $x \colon \ast \to (X,\tau)$, which is equivalently just a choice of point in $X$, and a [[morphism]] in $Top^{\ast/}$ is a morphism $f \colon X \to Y$ in [[Top]] (hence a continuous function), such that this triangle [[diagram]] [[commuting diagram|commutes]] \begin{displaymath} \itexarray{ && \ast \\ & {}^{\mathllap{x}}\swarrow && \searrow^{\mathrlap{y}} && \\ X && \underset{f}{\longrightarrow} && Y } \end{displaymath} which equivalently means that $f(x) = y$. \hypertarget{ForgettingAndAdjoiningBasepoints}{}\subsubsection*{{Forgetting and adjoining basepoints}}\label{ForgettingAndAdjoiningBasepoints} \begin{defn} \label{BasePointAdjoined}\hypertarget{BasePointAdjoined}{} The [[forgetful functor]] $Top^{\ast/} \to Top$ has a [[left adjoint]] given by forming the [[disjoint union space]] ([[coproduct]] in [[Top]]) with a [[point space]] (``adjoining a base point''), this is denoted by \begin{displaymath} (-)_+ \coloneqq (-) \sqcup \ast \;\colon \; Top \longrightarrow Top^{\ast/} \,. \end{displaymath} \end{defn} \hypertarget{wedge_sum_and_smash_product}{}\subsubsection*{{Wedge sum and Smash product}}\label{wedge_sum_and_smash_product} \begin{example} \label{WedgeSumAsCoproduct}\hypertarget{WedgeSumAsCoproduct}{} Given two pointed topoligical spaces $(X,x)$ and $(Y,y)$, then: \begin{enumerate}% \item their [[Cartesian product]] in $Top^{\ast/}$ is simply their [[product topological space]] $X \times Y$ equipped with the [[pair]] of basepoints $(X\times Y, (x,y))$; \item their [[coproduct]] in $Top^{\ast/}$ has to be computed using the second clause in \href{pointed+object#LimitsAndColimitsOfPointedObjects}{this prop.}: since the point $\ast$ has to be adjoined to the diagram, it is given not by the coproduct in $Top$ (which is the [[disjoint union space]]), but by the [[pushout]] in $Top$ of the form: \begin{displaymath} \itexarray{ \ast &\overset{x}{\longrightarrow}& X \\ {}^{\mathllap{y}}\downarrow &(po)& \downarrow \\ Y &\longrightarrow& X \vee Y } \,. \end{displaymath} This is called the \emph{[[wedge sum]]} operation on pointed objects. This is the [[quotient topological space]] of the [[disjoint union space]] under the [[equivalence relation]] which identifies the two basepoints: \begin{displaymath} X \vee Y \;\simeq\; (X \sqcup Y)/(x \sim y) \end{displaymath} \end{enumerate} Generally for a set $\{(X_i,x_i)\}_{i \in I}$ of pointed topological spaces \begin{enumerate}% \item their [[product]] is formed in [[Top]], as the [[product topological space]] with the [[Tychonoff topology]], with the [[tuple]] $(x_i)_{i \in I} \in \underset{i \in I}{\prod} X_i$ of basepoints being the new basepoint; \item their [[coproduct]] is formed by the [[colimit]] in $Top$ over the [[diagram]] with a basepoint adjoined, and is called the [[wedge sum]] $\vee_{i \in I} X_i$, which is the [[quotient topological space]] of the [[disjoint union space]] with all the basepoints identified: \begin{displaymath} \underset{i \in I}{\vee} X_i \;\simeq\; \left(\underset{i \in I}{\sqcup} X_i\right)/(x_i \sim x_j)_{i,j \in I} \,. \end{displaymath} \end{enumerate} \end{example} \begin{example} \label{}\hypertarget{}{} For $X$ a [[CW-complex]], then for every $n \in \mathbb{N}$ the [[quotient]] of its $n$-skeleton by its $(n-1)$-skeleton is the [[wedge sum]], def. \ref{WedgeSumAsCoproduct}, of $n$-spheres, one for each $n$-cell of $X$: \begin{displaymath} X^n / X^{n-1} \simeq \underset{i \in I_n}{\vee} S^n \,. \end{displaymath} \end{example} \begin{defn} \label{SmashProductOfPointedObjects}\hypertarget{SmashProductOfPointedObjects}{} The \emph{[[smash product]]} of pointed topological spaces is the [[functor]] \begin{displaymath} (-)\wedge(-) \;\colon\; Top^{\ast/} \times Top^{\ast/} \longrightarrow Top^{\ast/} \end{displaymath} given by \begin{displaymath} X \wedge Y \;\coloneqq\; \ast \underset{X\sqcup Y}{\sqcup} (X \times Y) \,, \end{displaymath} hence by the [[pushout]] in $Top$ of he frm \begin{displaymath} \itexarray{ X \sqcup Y &\overset{(id_X,y),(x,id_Y) }{\longrightarrow}& X \times Y \\ \downarrow &(po)& \downarrow \\ \ast &\longrightarrow& X \wedge Y } \,. \end{displaymath} In terms of the [[wedge sum]] from def. \ref{WedgeSumAsCoproduct}, this may be written concisely as the [[quotient space]] (\href{quotient+space#QuotientBySubspace}{this def}) of the [[product topological space]] by the [[subspace]] constituted by the [[wedge sum]] \begin{displaymath} X \wedge Y \simeq \frac{X\times Y}{X \vee Y} \,. \end{displaymath} \end{defn} t $\,$ \begin{tabular}{l|l|l} symbol&name&category theory\\ \hline $X \times Y$&[[product space]]&[[product]] in $Top^{\ast/}$\\ $X \vee Y$&[[wedge sum]]&[[coproduct]] in $Top^{\ast/}$\\ $X \wedge Y = \frac{X \times Y}{X \vee Y}$&[[smash product]]&[[tensor product]] in $Top^{\ast/}$\\ \end{tabular} \begin{example} \label{WedgeAndSmashOfBasePointAdjoinedTopologicalSpaces}\hypertarget{WedgeAndSmashOfBasePointAdjoinedTopologicalSpaces}{} For $X, Y \in Top$, with $X_+,Y_+ \in Top^{\ast/}$, def. \ref{BasePointAdjoined}, then \begin{itemize}% \item $X_+ \vee Y_+ \simeq (X \sqcup Y)_+$; \item $X_+ \wedge Y_+ \simeq (X \times Y)_+$. \end{itemize} \end{example} \begin{proof} By example \ref{WedgeSumAsCoproduct}, $X_+ \vee Y_+$ is given by the colimit in $Top$ over the diagram \begin{displaymath} \itexarray{ && && \ast \\ && & \swarrow && \searrow \\ X &\,\,& \ast && && \ast &\,\,& Y } \,. \end{displaymath} This is clearly $A \sqcup \ast \sqcup B$. Then, by definition \ref{SmashProductOfPointedObjects} \begin{displaymath} \begin{aligned} X_+ \wedge Y_+ & \simeq \frac{(X \sqcup \ast) \times (X \sqcup \ast)}{(X\sqcup \ast) \vee (Y \sqcup \ast)} \\ & \simeq \frac{X \times Y \sqcup X \sqcup Y \sqcup \ast}{X \sqcup Y \sqcup \ast} \\ & \simeq X \times Y \sqcup \ast \,. \end{aligned} \end{displaymath} \end{proof} \begin{example} \label{StandardReducedCyclinderInTop}\hypertarget{StandardReducedCyclinderInTop}{} Let $I \coloneqq [0,1] \subset \mathbb{R}$ be the [[closed interval]] with its [[Euclidean space|Euclidean]] [[metric topology]]. Hence \begin{displaymath} I_+ \in Top^{\ast/} \end{displaymath} is the interval with a disjoint basepoint adjoined, def. \ref{BasePointAdjoined}. Now for $X$ any [[pointed topological space]], then the [[smash product]] (def. \ref{SmashProductOfPointedObjects}) \begin{displaymath} X \wedge (I_+) = (X \times I)/(\{x_0\} \times I) \end{displaymath} is the \textbf{[[reduced cylinder]]} over $X$: the result of forming the ordinary [[cylinder]] over $X$, and then identifying the interval over the basepoint of $X$ with the point. (Generally, any construction in $Top$ properly adapted to pointed spaces is called the ``reduced'' version of the unpointed construction. Notably so for ``[[reduced suspension]]'' which we come to \hyperlink{MappingCones}{below}.) Just like the ordinary cylinder $X\times I$ receives a canonical injection from the [[coproduct]] $X \sqcup X$ formed in $Top$, so the reduced cyclinder receives a canonical injection from the coproduct $X \sqcup X$ formed in $Top^{\ast/}$, which is the [[wedge sum]] from example \ref{WedgeSumAsCoproduct}: \begin{displaymath} X \vee X \longrightarrow X \wedge (I_+) \,. \end{displaymath} \end{example} \hypertarget{mapping_cocones}{}\subsubsection*{{Mapping (co-)cones}}\label{mapping_cocones} Recall that the \emph{[[cone]]} on a [[topological space]] $X$ is the [[quotient space]] of the [[product space]] with the closed interval \begin{displaymath} Cone(X) = (X \times [0,1])/( X \times \{0\} ) \,. \end{displaymath} If $X$ is pointed with basepoint $x \in X$, then the \emph{reduced cone} is the further quotient by the copy of the interval over the basepoint \begin{displaymath} Cone(X,x) = Cone(X) / ( \{x\} \times [0,1] ) \,. \end{displaymath} For $f \colon X \to Y$ a [[continuous function]], then \begin{enumerate}% \item the \emph{[[mapping cylinder]]} of $f$ is the [[attachment space]] \begin{displaymath} Cyl(f) \coloneqq Y \cup_f Cyl(X) \end{displaymath} \item the \emph{[[mapping cone]]} of $f$ is the [[attachment space]] \begin{displaymath} Cone(f) \coloneqq Y \cup_f Cone(X) \end{displaymath} \end{enumerate} accordingly if $f \colon X \to Y$ is a continuous function between pointed spaces which preserves the basepoint, then the analogous construction with the [[reduced cylinder]] and the reduce cone, respectively, yield the \emph{reduced mapping cyclinder} and the \emph{reduced mapping cone}. We now say this again in terms of [[pushouts]]: \begin{defn} \label{MappingConeAndMappingCocone}\hypertarget{MappingConeAndMappingCocone}{} For $f \colon X \longrightarrow Y$ a [[continuous function]] between pointed spces, its \textbf{reduced [[mapping cone]]} is the space \begin{displaymath} Cone(f) \coloneqq \ast \underset{X}{\sqcup} Cyl(X) \underset{X}{\sqcup} Y \end{displaymath} in the [[colimit|colimiting]] [[diagram]] \begin{displaymath} \itexarray{ && X &\stackrel{f}{\longrightarrow}& Y \\ && \downarrow^{\mathrlap{i_1}} && \downarrow^{\mathrlap{i}} \\ X &\stackrel{i_0}{\longrightarrow}& Cyl(X) \\ \downarrow && & \searrow^{\mathrlap{\eta}} & \downarrow \\ {*} &\longrightarrow& &\longrightarrow& Cone(f) } \,, \end{displaymath} where $Cyl(X)$ is the [[reduced cylinder]] from def. \ref{StandardReducedCyclinderInTop}. \end{defn} \begin{prop} \label{ConeAndMappingCylinder}\hypertarget{ConeAndMappingCylinder}{} The colimit appearing in the definition of the reduced [[mapping cone]] in def. \ref{MappingConeAndMappingCocone} is equivalent to three consecutive [[pushouts]]: \begin{displaymath} \itexarray{ && X &\stackrel{f}{\longrightarrow}& Y \\ && \downarrow^{\mathrlap{i_1}} &(po)& \downarrow^{\mathrlap{i}} \\ X &\stackrel{i_0}{\longrightarrow}& Cyl(X) &\longrightarrow& Cyl(f) \\ \downarrow &(po)& \downarrow & (po) & \downarrow \\ {*} &\longrightarrow& Cone(X) &\longrightarrow& Cone(f) } \,. \end{displaymath} The two intermediate objects appearing here are called \begin{itemize}% \item the plain \textbf{reduced [[cone]]} $Cone(X) \coloneqq \ast \underset{X}{\sqcup} Cyl(X)$; \item the \textbf{reduced [[mapping cylinder]]} $Cyl(f) \coloneqq Cyl(X) \underset{X}{\sqcup} Y$. \end{itemize} \end{prop} \begin{defn} \label{SuspensionAndLoopSpaceObject}\hypertarget{SuspensionAndLoopSpaceObject}{} Let $X \in Top^{\ast/}$ be any pointed topological space. The [[mapping cone]], def. \ref{ConeAndMappingCylinder}, of $X \to \ast$ is called the \textbf{[[reduced suspension|reduced]] [[suspension]]} of $X$, denoted \begin{displaymath} \Sigma X = Cone(X\to\ast)\,. \end{displaymath} Via prop. \ref{ConeAndMappingCylinder} this is equivalently the coproduct of two copies of the cone on $X$ over their base: \begin{displaymath} \itexarray{ && X &\stackrel{}{\longrightarrow}& \ast \\ && \downarrow^{\mathrlap{i_1}} &(po)& \downarrow^{\mathrlap{}} \\ X &\stackrel{i_0}{\longrightarrow}& Cyl(X) &\longrightarrow& Cone(X) \\ \downarrow &(po)& \downarrow & (po) & \downarrow \\ {*} &\longrightarrow& Cone(X) &\longrightarrow& \Sigma X } \,. \end{displaymath} This is also equivalently the [[cofiber]]f of $(i_0,i_1)$, hence (example \ref{WedgeSumAsCoproduct}) of the [[wedge sum]] inclusion: \begin{displaymath} X \vee X = X \sqcup X \overset{(i_0,i_1)}{\longrightarrow} Cyl(X) \overset{cofib(i_0,i_1)}{\longrightarrow} \Sigma X \,. \end{displaymath} \end{defn} \begin{prop} \label{ReducedSuspensionBySmashProductWithCircle}\hypertarget{ReducedSuspensionBySmashProductWithCircle}{} The [[reduced suspension]] objects (def. \ref{SuspensionAndLoopSpaceObject}) induced from the standard [[reduced cylinder]] $(-)\wedge (I_+)$ of example \ref{StandardReducedCyclinderInTop} are isomorphic to the [[smash product]] (def. \ref{SmashProductOfPointedObjects}) with the [[circle] (the [[1-sphere]]) \begin{displaymath} cofib(X \vee X \to X \wedge (I_+)) \simeq S^1 \wedge X \,, \end{displaymath} \end{prop} \begin{prop} \label{UnreducedMappingConeAsReducedConeOfBasedPointAdjoined}\hypertarget{UnreducedMappingConeAsReducedConeOfBasedPointAdjoined}{} For $f \colon X \longrightarrow Y$ a morphism in [[Top]], then its unreduced mapping cone with respect to the standard cylinder object $X \times I$ def. \ref{TopologicalInterval}, is isomorphic to the reduced mapping cone, of the morphism $f_+ \colon X_+ \to Y_+$ (with a basepoint adjoined) with respect to the standard [[reduced cylinder]]: \begin{displaymath} Cone'(f) \simeq Cone(f_+) \,. \end{displaymath} \end{prop} \begin{proof} By example \ref{WedgeAndSmashOfBasePointAdjoinedTopologicalSpaces}, $Cone(f_+)$ is given by the colimit in $Top$ over the following diagram: \begin{displaymath} \itexarray{ \ast &\longrightarrow& X \sqcup \ast &\overset{(f,id)}{\longrightarrow}& Y \sqcup \ast \\ \downarrow && \downarrow && \downarrow \\ X \sqcup\ast &\longrightarrow& (X \times I) \sqcup \ast \\ \downarrow && && \downarrow \\ \ast &\longrightarrow& &\longrightarrow& Cone(f_+) } \,. \end{displaymath} We may factor the vertical maps to give \begin{displaymath} \itexarray{ \ast &\longrightarrow& X \sqcup \ast &\overset{(f,id)}{\longrightarrow}& Y \sqcup \ast \\ \downarrow && \downarrow && \downarrow \\ X \sqcup\ast &\longrightarrow& (X \times I) \sqcup \ast \\ \downarrow && && \downarrow \\ \ast \sqcup \ast &\longrightarrow& &\longrightarrow& Cone'(f)_+ \\ \downarrow && && \downarrow \\ \ast &\longrightarrow& &\longrightarrow& Cone'(f) } \,. \end{displaymath} This way the top part of the diagram (using the [[pasting law]] to compute the colimit in two stages) is manifestly a cocone under the result of applying $(-)_+$ to the diagram for the unreduced cone. Since $(-)_+$ is itself given by a colimit, it preserves colimits, and hence gives the partial colimit $Cone'(f)_+$ as shown. The remaining pushout then contracts the remaining copy of the point away. \end{proof} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} Most of the relevant constructions on pointed topological spaces are immediate specializations of the general construction discussed at \emph{[[pointed object]]}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[pointed simplicial set]] \item [[loop space]], [[reduced suspension]] \item [[smash product]], [[wedge sum]] \item [[pointed homotopy type]] \item [[spectrum]] \item [[classical model structure on pointed topological spaces]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Pierre Gabriel]], [[Michel Zisman]], chapter V.7 of \emph{[[Calculus of fractions and homotopy theory]]}, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer (1967) (\href{https://www.math.rochester.edu/people/faculty/doug/otherpapers/GZ.pdf}{pdf}) \end{itemize} [[!redirects pointed topological spaces]] [[!redirects based topological space]] [[!redirects based topological spaces]] \end{document}