\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{polarization} \begin{quote}% This entry is about polarization of [[phase spaces]] (or of any [[symplectic manifold]]) into [[canonical coordinates]] and [[canonical momenta]]. Different concepts of a similar name include the \emph{[[polarization identity]]} (such as in an [[inner product space]] or a [[Jordan algebra]]) or \emph{[[wave polarization]]} (such as polarized [[light]]). On the other hand, the concept of \emph{[[polarized algebraic variety]]} is closely related. \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{geometric_quantization}{}\paragraph*{{Geometric quantization}}\label{geometric_quantization} [[!include geometric quantization - contents]] \hypertarget{symplectic_geometry}{}\paragraph*{{Symplectic geometry}}\label{symplectic_geometry} [[!include symplectic geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{OfASymplecticManifold}{Of a symplectic manifold}\dotfill \pageref*{OfASymplecticManifold} \linebreak \noindent\hyperlink{OfAPoissonLieAlgebroid}{Of a Poisson Lie algebroid}\dotfill \pageref*{OfAPoissonLieAlgebroid} \linebreak \noindent\hyperlink{OfACourantLie2Algebroid}{Of a Courant Lie 2-algebroid}\dotfill \pageref*{OfACourantLie2Algebroid} \linebreak \noindent\hyperlink{OfASymplecticLienAlgebroid}{Of a symplectic Lie $n$-algebroid}\dotfill \pageref*{OfASymplecticLienAlgebroid} \linebreak \noindent\hyperlink{of_an_plectic_smooth_groupoid}{Of an $n$-plectic smooth $\infty$-groupoid}\dotfill \pageref*{of_an_plectic_smooth_groupoid} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{real_polarizations}{Real polarizations}\dotfill \pageref*{real_polarizations} \linebreak \noindent\hyperlink{KählerPolarization}{K\"a{}hler polarizations}\dotfill \pageref*{KählerPolarization} \linebreak \noindent\hyperlink{convex_polarizations}{Convex polarizations}\dotfill \pageref*{convex_polarizations} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{quantum_states_and_wave_functions}{Quantum states and wave functions}\dotfill \pageref*{quantum_states_and_wave_functions} \linebreak \noindent\hyperlink{bohrsommerfeld_leaves}{Bohr-Sommerfeld leaves}\dotfill \pageref*{bohrsommerfeld_leaves} \linebreak \noindent\hyperlink{liouville_integrability}{Liouville integrability}\dotfill \pageref*{liouville_integrability} \linebreak \noindent\hyperlink{refinement_to_higher_geometric_quantization}{Refinement to higher geometric quantization}\dotfill \pageref*{refinement_to_higher_geometric_quantization} \linebreak \noindent\hyperlink{refinement_to_higher_quantization_by_pushforward}{Refinement to higher quantization by push-forward}\dotfill \pageref*{refinement_to_higher_quantization_by_pushforward} \linebreak \noindent\hyperlink{other}{Other}\dotfill \pageref*{other} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For a [[symplectic manifold]] $(X, \omega)$ regarded as the [[phase space]] of a [[physical system]], a choice of \emph{polarization} is, locally, a choice of decomposition of the [[coordinates]] on $X$ into ``[[canonical coordinates]]'' and ``[[canonical momenta]]''. The archtypical example is that where $X = T^* \Sigma$ is the [[cotangent bundle]] of a [[manifold]] $\Sigma$. In this case the canonical [[canonical coordinates]] are those parameterizing $\Sigma$ itself, while the canonical [[canonical momenta]] are coordinates on each [[fiber]] of the cotangent bundle. But for general symplectic manifolds there is no such canonical choice of coordinates and momenta. Moreover, in general there is not even a global notion of canonical momenta. Instead, a choice of (real) polarization is a [[foliation]] of phase space by [[Lagrangian submanifolds]] and then \begin{itemize}% \item the ``[[canonical coordinates]]'' are coordinates on the corresponding [[leaf space]] (parameterizing the leaves); \item the ``[[canonical momenta]]'' are coordinates along each [[leaf]]. If there is no \emph{typical leaf} then this is not a globally defined notion, only the polarization itself is. \end{itemize} Locally this is a choice of [[coordinate patch]] $\phi : \mathbb{R}^{2n} \to X$ such that the [[symplectic form]] takes the form \begin{displaymath} \phi^* \omega = \sum_{i = 1}^n \mathbf{d} q^i \wedge \mathbf{d}p_i \end{displaymath} where the $\{q^i : \mathbb{R}^{2n} \simeq \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}\}$ are the canonical coordinates on the first $\mathbb{R}^n$-factor of the [[Cartesian space]] $\mathbb{R}^{2n}$, and where $\{p_o : \mathbb{R}^{2n} \simeq \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}\}$ are canonical coordinates on the second $\mathbb{R}^n$-factor. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The traditional notion of polarization applies to a [[symplectic manifold]]. \begin{itemize}% \item \href{OfASymplecticManifold}{Of a symplectic manifold} \end{itemize} Symplectic manifold are the lowest step in a tower of notions in [[higher symplectic geometry]] which proceeds with [[n-plectic geometry]] for all $n$ and manifolds refined to [[smooth infinity-groupoids]]. The next simplest cases in this tower are [[symplectic Lie n-algebroids]], which for $n=1$ are [[Poisson Lie algebroids]] and for $n = 2$ are [[Courant Lie 2-algebroids]]: \begin{itemize}% \item \hyperlink{OfAPoissonLieAlgebroid}{Of a Poisson Lie algebroid} \item \hyperlink{OfACourantLie2Algebroid}{Of a Courant Lie 2-algebroid} \item \hyperlink{OfASymplecticLienAlgebroid}{Of a symplectic Lie n-algebroid} \end{itemize} \hypertarget{OfASymplecticManifold}{}\subsubsection*{{Of a symplectic manifold}}\label{OfASymplecticManifold} Let $(X, \omega)$ be a [[symplectic manifold]]. \begin{defn} \label{ByLagrangianFoliation}\hypertarget{ByLagrangianFoliation}{} A \textbf{real polarization} of $(X, \omega)$ is a [[foliation]] by [[Lagrangian submanifolds]]. \end{defn} For instance (\hyperlink{Weinstein}{Weinstein, p. 9}). More generally \begin{defn} \label{}\hypertarget{}{} A \textbf{polarization} of $(X,\omega)$ is a choice of involutive [[Lagrangian subspace|Lagrangian subbundle]] $\mathcal{P} \hookrightarrow T_{\mathbb{C}} X$ of of the [[complexification|complexified]] [[tangent bundle]] of $X$. \end{defn} For instance (\hyperlink{BatesWeinstein}{Bates-Weinstein, def. 7.4}) \hypertarget{OfAPoissonLieAlgebroid}{}\subsubsection*{{Of a Poisson Lie algebroid}}\label{OfAPoissonLieAlgebroid} A [[Poisson Lie algebroid]] $\mathfrak{P}$ is a [[symplectic Lie n-algebroid]] for $n = 1$. Regarding its [[Chevalley-Eilenberg algebra]] as the algebra of functions on a [[dg-manifold]], that dg-manifold carries a graded [[symplectic form]] $\omega$. One can then say \begin{defn} \label{ForPoissonLieAlgebroidyByLagrangianFoliation}\hypertarget{ForPoissonLieAlgebroidyByLagrangianFoliation}{} A dg-[[Lagrangian submanifold]] of $(\mathfrak{P}, \omega)$ is also called a \textbf{$\Lambda$-structure}. (\hyperlink{Severa}{\v{S}evera, section 4}). Hence we might say \textbf{real polarization} of $(\mathfrak{P}, \omega)$ is a foliation by dg-Lagrangian submanifolds. \end{defn} \begin{prop} \label{}\hypertarget{}{} For $(X, \pi)$ the [[Poisson manifold]] underlying a [[Poisson Lie algebroid]] $(\mathfrak{P}, \omega)$, a dg-Lagrangian submanifold of $(\mathfrak{P}, \omega)$ corresponds to a [[coisotropic submanifold]] of $(X, \pi)$. \end{prop} (\hyperlink{Severa}{\v{S}evera, section 4}) \begin{remark} \label{}\hypertarget{}{} The dg-Lagrangian submanifolds also correspond to [[branes]] in the [[Poisson sigma-model]] (see there) on $(\mathfrak{P}, \omega)$. \end{remark} \hypertarget{OfACourantLie2Algebroid}{}\subsubsection*{{Of a Courant Lie 2-algebroid}}\label{OfACourantLie2Algebroid} A [[Courant Lie algebroid]] $\mathfrak{C}$ is a [[symplectic Lie n-algebroid]] for $n = 2$. Regarding its [[Chevalley-Eilenberg algebra]] as the algebra of functions on a [[dg-manifold]], that dg-manifold carries a graded [[symplectic form]] $\omega$. One can then say \begin{defn} \label{ForPoissonLieAlgebroidyByLagrangianFoliation}\hypertarget{ForPoissonLieAlgebroidyByLagrangianFoliation}{} A dg-[[Lagrangian submanifold]] of $(\mathfrak{C}, \omega)$ is also called a \textbf{$\Lambda$-structure}. (\hyperlink{Severa}{\v{S}evera, section 4}). Hence we might say \textbf{real polarization} of $(\mathfrak{C}, \omega)$ is a foliation by dg-Lagrangian submanifolds. \end{defn} \begin{prop} \label{}\hypertarget{}{} The dg-Lagrangian submanifolds of a Courant Lie 2-algebroid $(\mathfrak{C}, \omega)$ correspond to [[Dirac structures]] on $(\mathfrak{C}, \omega)$. \end{prop} (\hyperlink{Severa}{\v{S}evera, section 4}) \hypertarget{OfASymplecticLienAlgebroid}{}\subsubsection*{{Of a symplectic Lie $n$-algebroid}}\label{OfASymplecticLienAlgebroid} ?? \hypertarget{of_an_plectic_smooth_groupoid}{}\subsubsection*{{Of an $n$-plectic smooth $\infty$-groupoid}}\label{of_an_plectic_smooth_groupoid} A simple notion of a real polarization for [[2-plectic manifolds]] is considered within the context of higher geometric quantization in \hyperlink{Rogers}{Rogers, Chap. 7}. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{real_polarizations}{}\subsubsection*{{Real polarizations}}\label{real_polarizations} (\ldots{}) \hypertarget{KählerPolarization}{}\subsubsection*{{K\"a{}hler polarizations}}\label{KählerPolarization} If the [[symplectic manifold]] $(X,\omega)$ lifts to the structure of a [[Kähler manifold]] $(X, J, g)$, hence with [[Riemannian metric]] $g(-,-) = \omega(-,I(-))$, then the holomorphic/antiholomorphic decomposition induced by the [[complex manifold]] structure is a polarization of $(X,\omega)$. Polarizations of this form are therefore called \textbf{[[Kähler polarizations]]}. \hypertarget{convex_polarizations}{}\subsubsection*{{Convex polarizations}}\label{convex_polarizations} \begin{itemize}% \item [[p-convex polarization]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \hypertarget{quantum_states_and_wave_functions}{}\subsubsection*{{Quantum states and wave functions}}\label{quantum_states_and_wave_functions} Upon ([[geometric quantization|geometric]]) [[quantization]] of the physical system described by the [[symplectic manifold]] $(X, \omega)$ a [[quantum state]] is supposed to be a function on $X$ -- or rather a [[section]] of a [[prequantum line bundle]] which is a ``wave-function that only depends on the canonical coordinates'', not on the canonical momenta. In terms of polarizations this is formalized by saying that a [[space of states (in geometric quantization)|quantum state]] is a section which is [[covariant derivative|covariant constant]] along the [[leaves]] of the polarization (along the ``momentum direction''). \hypertarget{bohrsommerfeld_leaves}{}\subsubsection*{{Bohr-Sommerfeld leaves}}\label{bohrsommerfeld_leaves} After a choice of [[prequantum line bundle]] $\nabla$ lifting $\omega$, a \textbf{[[Bohr-Sommerfeld leaf]]} of a (real) polarization is a [[leaf]] on which the prequantum line bundle is not just flat, but also trivializable as a [[circle bundle]] with connection. \hypertarget{liouville_integrability}{}\subsubsection*{{Liouville integrability}}\label{liouville_integrability} If a polarization on an $2n$-dimensional symplectic manifold is generated from $n$ [[Hamiltonian vector fields]] whose [[Hamiltonians]] commute with each other under the [[Poisson bracket]] (and one of them is regarded as that generating time evolution of a mechanical system) then one speaks of a [[Liouville integrable system]]. \hypertarget{refinement_to_higher_geometric_quantization}{}\subsubsection*{{Refinement to higher geometric quantization}}\label{refinement_to_higher_geometric_quantization} [[!include infinity-CS theory for binary non-degenerate invariant polynomial - table]] \hypertarget{refinement_to_higher_quantization_by_pushforward}{}\subsubsection*{{Refinement to higher quantization by push-forward}}\label{refinement_to_higher_quantization_by_pushforward} [[!include orientations in higher quantization - table]] \hypertarget{other}{}\subsubsection*{{Other}}\label{other} \begin{itemize}% \item [[canonical transformation]] \item [[polarized algebraic variety]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Lecture notes include \begin{itemize}% \item [[Alan Weinstein]], \emph{Lectures on Symplectic manifolds} Lecture 2 \emph{Lagrangian splittings, real and complex polarizations, K\"a{}hler manifolds}, CBMS Regional Conference Series in Mathematics, AMS (1977) \end{itemize} \begin{itemize}% \item Sean Bates, [[Alan Weinstein]], \emph{Lectures on the geometry of quantization}, \href{http://www.math.berkeley.edu/~alanw/GofQ.pdf}{pdf} \end{itemize} \begin{itemize}% \item Kristin Shaw, \emph{An introduction to polarizations} (\href{http://www.math.toronto.edu/karshon/grad/2006-07/polarizations.pdf}{pdf}) \end{itemize} and section 4 and 5 of \begin{itemize}% \item [[Matthias Blau]], \emph{Symplectic Geometry and Geometric Quantization} ([[BlauGeometricQuantization.pdf:file]]) \end{itemize} or section 5 of \begin{itemize}% \item A. Echeverria-Enriquez, M.C. Munoz-Lecanda, N. Roman-Roy, C. Victoria-Monge, \emph{Mathematical Foundations of Geometric Quantization} Extracta Math. 13 (1998) 135-238 (\href{http://arxiv.org/abs/math-ph/9904008}{arXiv:math-ph/9904008}) \end{itemize} or \begin{itemize}% \item Yuichi Nohara, \emph{Independence of Polarization in Geometric Quantization} (\href{http://geoquant2007.mi.ras.ru/nohara.pdf}{pdf}) \end{itemize} Lagrangian submanifolds of [[L-infinity algebroids]] are considered in \begin{itemize}% \item [[Pavol Ševera]], \emph{Some title containing the words ``homotopy'' and ``symplectic'', e.g. this one} (\href{http://arxiv.org/abs/math/0105080}{arXiv:0105080}) \end{itemize} In the case that the polarization integrates to the [[action]] of a [[Lie group]] $G$ one may think of passing to polarized sections as equivlent to passing to $G$-[[gauge equivalence|gauge equivalence classes]]. This point of view is highlighted in \begin{itemize}% \item [[Gabriel Catren]], \emph{On the Relation Between Gauge and Phase Symmetries}, Foundations of Physics 44 (12):1317-1335 (2014) (\href{http://philpapers.org/rec/CATOTR}{web}) \end{itemize} A candidate for polarizations for higher geometric quantization in $n$-plectic geometry is discussed in Chapter 7 of \begin{itemize}% \item [[Chris Rogers]], \emph{Higher symplectic geometry} PhD thesis (\href{http://arxiv.org/abs/1106.4068}{arXiv:1106.4068}). \end{itemize} [[!redirects polarizations]] [[!redirects canonical coordinate]] [[!redirects canonical coordinates]] [[!redirects real polarization]] [[!redirects real polarizations]] [[!redirects complex polarization]] [[!redirects complex polarizations]] \end{document}