\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{polarization identity} \begin{quote}% This entry is about the notion in [[linear algebra]] relating bilinear and quadratic forms. For the notion in [[symplectic geometry]] see at \emph{[[polarization]]}. For polarization of light, see \emph{[[wave polarization]]} (if we ever write it). \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{linear_algebra}{}\paragraph*{{Linear algebra}}\label{linear_algebra} [[!include homotopy - contents]] \hypertarget{the_polarization_identity}{}\section*{{The polarization identity}}\label{the_polarization_identity} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{higher_order}{Higher order}\dotfill \pageref*{higher_order} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Any [[symmetric bilinear form]] $(-) \cdot (-)$ defines a [[quadratic form]] $(-)^2$. The \emph{polarization identity} reconstructs the bilinear form from the quadratic form. More generally, starting from any [[bilinear form]], the polarization identity reconstructs its symmetrization. A slight variation applies this also to [[sesquilinear form]]s. The whole business actually applies to [[bilinear maps]], not just forms (that is, taking arbitrary values, not just values in the [[base field]] or some other [[line]]). The linearity is crucial: polarization doesn't work without addition (and subtraction); we must also be able to divide by $2$. It is also possible to generalize from quadratic forms to higher-order [[homogenous form]]s. \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} Let $R$ be a [[commutative ring]]. Let $V$ and $W$ be $R$-[[modules]], and let $m\colon V \times V \to W$ be a [[bilinear map]]; that is, we have an $R$-module [[homomorphism]] $V \otimes V \to W$. Let $Q\colon V \to W$ be the [[quadratic map]] given by $Q(v) = m(v,v)$; this is \emph{not} an $R$-module homomorphism. Then we have: \begin{itemize}% \item the \emph{[[parallelogram law]]}: $2 Q(x) + 2 Q(y) = Q(x + y) + Q(x - y)$, and \item the \textbf{polarization identity}: $2 m(x,y) + 2 m(y,x) = Q(x + y) - Q(x - y)$. \end{itemize} Writing $Q(x)$ as $x^2$ and $m(x,y)$ as $x y$, these read: \begin{itemize}% \item $2 x^2 + 2 y^2 = (x +y )^2 + (x - y)^2$, \item $2 x y + 2 y x = (x + y)^2 - (x - y)^2$. \end{itemize} The polarization identity also has these alternative forms: \begin{itemize}% \item $x y + y x = (x + y)^2 - x^2 - y^2$, \item $x y + y x = x^2 + y^2 - (x - y)^2$; \end{itemize} these may derived by adding or subtracting the parallelogram law and the first polarization identity; although the derivation requires cancelling $2$, the alternative polarization identities remain valid regardless of whether $2$ is cancellable in $W$. Now suppose that $m$ is [[symmetric bilinear map|symmetric]], so that $x y = y x$. And suppose that $2 \coloneqq 1 + 1$ is (not merely cancellable but also) invertible in $W$. Then the polarization identities read: \begin{itemize}% \item $x y = \frac{1}{4} (x + y)^2 - \frac{1}{4} (x - y)^2$, \item $x y = \frac{1}{2} (x + y)^2 - \frac{1}{2} x^2 - \frac{1}{2} y^2$, \item $x y = \frac{1}{2} x^2 + \frac{1}{2} y^2 - \frac{1}{2} (x - y)^2$; \end{itemize} That is, we may recover $m$ from $Q$ (in any of these ways). Regardless of the original symmetry of $m$, we may recover its symmetrization $x \circ y = (x y + y x)/2$. We can go the other direction: given a quadratic map $Q$, if $2$ is invertible, then any polarization identity defines a symmetric bilinear map $m$; these all agree if $Q$ obeys the parallelogram law, and then $Q$ may be recovered from this $m$ once more. If $R$ is a $*$-[[star-ring|ring]], then $m$ could be conjugate-symmetric ([[Hermitian map|Hermitian]]). Then $Q$ would satisfy $Q(t x) = t^* t Q(x)$ instead of $Q(t x) = t^2 Q(x)$ as for a quadratic map. Since everything is still bilinear or quadratic over the [[integers]], the parallelogram identity still follows, as does the polarization identity in its general forms (before assuming that $m$ is symmetric). We can still recover $m$ from $Q$ if $R$ has an [[imaginary unit]]: an element $i$ such that $i + i^* = 0$ and $i i^* = 1$; we do this as follows: \begin{displaymath} x y = \frac{1}{4} Q(x + y) - \frac{1}{4} Q(x - y) + \frac{1}{4} i Q(x + i y) - \frac{1}{4} i Q(x - i y) . \end{displaymath} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} This is best known in the case of bilinear and quadratic \emph{forms}, where $W$ is the [[ground ring]] $R$. Here, $m$ is an [[inner product]], making $V$ into an [[inner product space]], and $Q$ is (the square of) the norm, making $V$ into a [[normed space]]. This also applies to [[commutative algebras]], where $W$ is $V$. Actually, there is no need for $m$ to be associative; although one rarely studies commutative but [[non-associative algebras]], we have an exception with [[Jordan algebras]]. Although the Jordan identity is simpler to express in terms of the multiplication operation (as usual), the application to [[quantum mechanics]] may be more easily motivated through the squaring operation (since the square of an [[observable]] has a more obvious meaning than the Jordan product of two observables), and the polarization identities allow us to recover multiplication from squaring (and subtraction). \hypertarget{higher_order}{}\subsection*{{Higher order}}\label{higher_order} Let $R, V, W$ be as before. Let $p$ be a [[natural number]], and let $Q\colon V \to W$ be homogeneous of degree $p$; that is, \begin{displaymath} Q(t v) = t^p Q(v) . \end{displaymath} We wish to turn $Q$ into a symmetric [[multilinear map]] $m$ of rank $p$ (so $m\colon \Sym_p V \to W$ is linear) as follows: \begin{itemize}% \item If $p = 0$, $m() = Q(0)$; \item If $p = 1$, $m(v_1) = Q(v_1)$; \item If $p = 2$, $m(v_1, v_2) = Q(v_1 + v_2) - Q(v_1) - Q(v_2)$; \item If $p = 3$, $m(v_1, v_2, v_3) = Q(v_1 + v_2 + v_3) - Q(v_1 + v_2) - Q(v_1 + v_3) - Q(v_2 + v_3) + Q(v_1) + Q(v_2) + Q(v_3)$; \item If $p = 4$, $m(v_1, v_2, v_3, v_4) = Q(v_1 + v_2 + v_3 + v_4) - Q(v_1 + v_2 + v_3) - Q(v_1 + v_2 + v_4) - Q(v_1 + v_3 + v_4) - Q(v_2 + v_3 + v_4) + Q(v_1 + v_2) + Q(v_1 + v_3) + Q(v_1 + v_4) + Q(v_2 + v_3) + Q(v_2 + v_4) + Q(v_3 + v_4) - Q(v_1) - Q(v_2) - Q(v_3) - Q(v_4)$; \item etc. \end{itemize} So defined, $m$ is manifestly symmetric, but it might \emph{not} be multilinear just because $Q$ is homogeneous (except for $p = 1$); instead, we \emph{define} a \textbf{homogeneous polynomial} of degree $p$ from $V$ to $W$ be such a homogeneous $Q$ such that $m$ \emph{is} multilinear. (Then a \textbf{[[polynomial]]} from $V$ to $W$ is a sum of homogeneous polynomials of various degrees.) Note that if $V$ is the [[free module]] $R^n$, then this is the usual notion of a polynomial with $n$ variables. Morally, the expressions on the right-hand side of each item above should end with $\pm Q(0)$, but this ends up not mattering for the definition of a homogeneous polynomial (except when $p = 0$), in which case $Q(0) = 0$ (including when $p = 0$). If one were ever to consider the polarization of a non-polynomial homogeneous map, however, then presumably this term would need to be restored. To get the same $m$ as in earlier sections of this text, the expressions here must be divided by the [[factorial]] $p!$. Of course, this only works if $p!$ is invertible in $R$; even if $R$ is a [[field]], we need its [[characteristic]] to be greater than $p$ (or $0$). The expressions above work regardless of this to define what a homogeneous polynomial is. However, if you wish to recover $Q$ from $m$, then you do need to divide by the polynomial; otherwise, the only rule that holds in general is that \begin{displaymath} m(v,\ldots,v) = p! Q(v) . \end{displaymath} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[cubical structure on a line bundle]] \end{itemize} [[!redirects polarization identity]] [[!redirects polarization identities]] [[!redirects polarisation identity]] [[!redirects polarisation identities]] \end{document}