\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{polynomial Poisson algebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{symplectic_geometry}{}\paragraph*{{Symplectic geometry}}\label{symplectic_geometry} [[!include symplectic geometry - contents]] \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{noncommutative_geometry}{}\paragraph*{{Noncommutative geometry}}\label{noncommutative_geometry} [[!include noncommutative geometry - contents]] \hypertarget{formal_geometry}{}\paragraph*{{Formal geometry}}\label{formal_geometry} [[!include formal geometry -- contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{formal_deformation_quantization_via_universal_enveloping_algebra}{Formal deformation quantization via universal enveloping algebra}\dotfill \pageref*{formal_deformation_quantization_via_universal_enveloping_algebra} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} It is a classical fact that the [[universal enveloping algebra]] of a [[Lie algebra]] provides a [[formal deformation quantization]] of the corresponding [[Lie-Poisson structure]] (example \ref{DeformationQuantizationOfLiePoissonStructuresByUniversalEnvelopingAlgebras} below). Remarkably, this statement generalizes to more general polynomial Poisson algebras (def. \ref{PolynomialPoissonAlgebra} below) for a suitable generalized concept of universal enveloping algebra (def. \ref{DeformationQuantizationOfLiePoissonStructuresByUniversalEnvelopingAlgebras} below): it is \emph{always} true up to third order in $\hbar$, and sometimes to higher order (\hyperlink{PenkavaVanhaecke00}{Penkava-Vanhaecke 00, theorem 3.2}, prop. \ref{UniversalEnvelopingAlgebraProvidesDeformationQuantizationAtLeastToOrder3} below). In particular it also holds true for restrictions of [[Poisson bracket Lie algebras]] to their [[Heisenberg Lie algebras]] (example \ref{DeformationQuantizationOfLiePoissonStructuresByUniversalEnvelopingAlgebras} below). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{PolynomialPoissonAlgebra}\hypertarget{PolynomialPoissonAlgebra}{} \textbf{([[polynomial]] [[Poisson algebra]])} A [[Poisson algebra]] $((A,\cdot), \{-,-\})$ is called a \emph{polynomial Poisson algebra} if the underlying [[commutative algebra]] $(A,\cdot)$ is a [[polynomial algebra]], hence a [[symmetric algebra]] \begin{displaymath} Sym(V) \coloneqq T(V)/(x \otimes y - y \otimes x \vert x,y \in V) \end{displaymath} on some [[vector space]] $V$. Here \begin{displaymath} T(V) \coloneqq \underset{n \in \mathbb{N}}{\oplus} V^{\otimes^n} \end{displaymath} denotes the [[tensor algebra]] of $V$. We write \begin{displaymath} \mu \;\colon\; T(V) \longrightarrow Sym(V) \end{displaymath} for the canonical [[projection]] map (which is an algebra [[homomorphism]]) and \begin{displaymath} \sigma \;\colon\; Sym(V) \longrightarrow T(V) \end{displaymath} for its [[linear map|linear]] inverse (symmetrization, which is not in general an algebra [[homomorphism]]). Notice that by its bi-[[derivation]] property the Poisson bracket on a polynomial Poisson algebra is fixed by its restriction to linear elements \begin{displaymath} \{-,-\} \;\colon\; V \otimes V \longrightarrow Sym(V) \,. \end{displaymath} \end{defn} \begin{defn} \label{UniversalEnvelopingAlgebraOfPolynomialPoissonAlgebra}\hypertarget{UniversalEnvelopingAlgebraOfPolynomialPoissonAlgebra}{} \textbf{(universal enveloping algebra of polynomial Poisson algebra)} Given a polynomial Poisson algebra $(Sym(V), \{-,-\})$ (def. \ref{PolynomialPoissonAlgebra}), say that its \emph{universal enveloping algebra} $\mathcal{U}(V,\{-,-\})$ is the [[associative algebra]] which is the [[quotient]] of the [[tensor algebra]] of $V$ with a [[power series|formal variable]] $\hbar$ adjoined by the two-sided ideal which is generated by the the $\hbar$-Poisson bracket relation on linear elements: \begin{displaymath} \mathcal{U}(V,\{-,-\}) \;\coloneqq\; T(V)/( x \otimes y - y \otimes x - \hbar \{x,y\} \vert x,y \in V ) \,. \end{displaymath} This comes with the quotient projection linear map which we denote by \begin{displaymath} \rho \;\colon\; T(V)[ [ \hbar ] ] \longrightarrow \mathcal{U}(V,\hbar\{-,-\}) \,. \end{displaymath} \end{defn} (\hyperlink{PenkavaVanhaecke00}{Penkava-Vanhaecke 00, def. 3.1}) The combined linear projection maps from def. \ref{PolynomialPoissonAlgebra} and def. \ref{UniversalEnvelopingAlgebraOfPolynomialPoissonAlgebra} we denote by \begin{displaymath} \tau \coloneqq \rho \circ (\sigma/[ [ \hbar ] ]) \;\colon\; Sym(V)[ [ \hbar ] ] \longrightarrow \mathcal{U}(V,\{-,-\}) \,. \end{displaymath} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{PolynomialLiePoissonStructure}\hypertarget{PolynomialLiePoissonStructure}{} \textbf{([[Lie-Poisson structure]] on affine algebraic variety)} Let $(C^\infty(\mathbb{R}^n), \pi)$ be a [[Poisson manifold]] whose underlying manifold is a [[Cartesian space]] $\mathbb{R}^n$. Then the restriction of its Poisson algebra $( C^\infty(\mathbb{R}^n, \cdot), \pi^{i j} \partial_i(-) \cdot \partial_j(-) )$ to the [[polynomial functions]] $\mathbb{R}[x^1, \cdots, x^n ] \ookrightarrow C^\infty(\mathbb{R}^n)$ is a polynomial Poisson algebra according to def. \ref{PolynomialPoissonAlgebra}. In particular if $(\mathfrak{g}, [-,-])$ is a [[Lie algebra]] and $(\mathfrak{g}^\ast, \{-,-\})$ the corresponding [[Lie-Poisson structure|Lie-Poisson manifold]], then the corresponding polynomial Poisson algebra is $(Sym(\mathfrak{g}), \{-,-\})$ where the restriction of the Poisson bracket to linear polynomial elements coincides with the [[Lie bracket]]: \begin{displaymath} \{x,y\} = [x,y] \,. \end{displaymath} \end{example} \begin{example} \label{UniversalEnvelopingAlgebraOfLieAlgebra}\hypertarget{UniversalEnvelopingAlgebraOfLieAlgebra}{} \textbf{([[universal enveloping algebra]] of [[Lie algebra]])} In the case of a polynomial [[Lie-Poisson structure]] $(Sym(\mathfrak{g}), [-,-])$ (example \ref{PolynomialLiePoissonStructure}) the universal enveloping algebra $\mathcal{U}(\mathfrak{g},[-,-])$ from def. \ref{UniversalEnvelopingAlgebraOfPolynomialPoissonAlgebra} (for $\hbar = 1$) coincides with the standard [[universal enveloping algebra]] of the [[Lie algebra]] $(\mathfrak{g}, [-,-])$. \end{example} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{formal_deformation_quantization_via_universal_enveloping_algebra}{}\subsubsection*{{Formal deformation quantization via universal enveloping algebra}}\label{formal_deformation_quantization_via_universal_enveloping_algebra} \begin{prop} \label{UniversalEnvelopingAlgebraProvidesDeformationQuantizationAtLeastToOrder3}\hypertarget{UniversalEnvelopingAlgebraProvidesDeformationQuantizationAtLeastToOrder3}{} \textbf{(universal enveloping algebra provides [[deformation quantization]] at least up to order 3)} Let $( Sym(V), \{-,-\} )$ be a polynomial Poisson algebra (def. \ref{PolynomialPoissonAlgebra}) such that the canonical linear map to its universal enveloping algebra (def. \ref{UniversalEnvelopingAlgebraOfPolynomialPoissonAlgebra}) is [[injective function|injective]] up to order $n \in \mathbb{N}\cup \{\infty\}$ \begin{displaymath} \tau/(\hbar^{n+1}) \;\colon\; Sym(V)[ [ \hbar ] ]/(\hbar^{n+1}) \hookrightarrow \mathcal{U}(V,\hbar\{-,-\})/(\hbar^{n+1}) \,. \end{displaymath} Then the restriction of the product on $\mathcal{U}(V,\hbar\{-,-\})/(\hbar^{n+1})$ to $Sym(V)/(\hbar^{n+1})$ is a [[deformation quantization]] of $(Sym(V), \{-,-\})$ to order $n$ (hence a genuine deformation quantization in the case that $n = \infty$). Moreover, this is \emph{always} the case for $n = 3$, hence for every polynomial Poisson algebra its universal enveloping algebra always provides a deformation quantization of order $3$ in $\hbar$. \end{prop} (\hyperlink{PenkavaVanhaecke00}{Penkava-Vanhaecke 00, theorem 3.2 with section 2}) \begin{example} \label{DeformationQuantizationOfLiePoissonStructuresByUniversalEnvelopingAlgebras}\hypertarget{DeformationQuantizationOfLiePoissonStructuresByUniversalEnvelopingAlgebras}{} \textbf{([[formal deformation quantization]] of [[Lie-Poisson structures]] by universal enveloping algebras)} In the following cases the map $\tau$ in prop. \ref{UniversalEnvelopingAlgebraProvidesDeformationQuantizationAtLeastToOrder3} is injective to arbitrary order, hence in these cases the universal enveloping algebra provides a genuine [[deformation quantization]]: \begin{enumerate}% \item the case that the Poisson bracket is [[linear Poisson structure|linear]] in that restricts as \begin{displaymath} \{-,-\} \;\colon\; V \otimes V \longrightarrow V \hookrightarrow Sym(V) \,. \end{displaymath} This is the case of the [[Lie-Poisson structure]] from example \ref{PolynomialLiePoissonStructure} and the universal enveloping algebra that provides it deformation quantization is the standard one (example \ref{UniversalEnvelopingAlgebraOfLieAlgebra}). \item more generally, the case that the Poisson bracket restricted to linear elements has linear and constant contribution in that it restricts as \begin{displaymath} \{-,-\} \;\colon\; V \otimes V \longrightarrow \mathbb{R} \oplus V \hookrightarrow Sym(V) \,. \end{displaymath} This includes notably the Poisson structures induced by [[symplectic vector spaces]], in which case the restriction \begin{displaymath} \{-,-\} \;\colon\; (\mathbb{R} \oplus V) \otimes (\mathbb{R} \oplus V) \longrightarrow (\mathbb{R} \oplus V) \end{displaymath} is the [[Lie bracket]] of the associated [[Heisenberg Lie algebra]]. \end{enumerate} \end{example} This is (\hyperlink{PenkavaVanhaecke00}{Penkava-Vanhaecke 00, p. 26}) The first statement in itself is a classical fact (reviewed e.g. in \hyperlink{Gutt11}{Gutt 11}). \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Michael Penkava]], [[Pol Vanhaecke]], \emph{Deformation quantization of Polynomial Poisson algebras}, Journal of Algebra 227, 365-393 2000 (\href{https://arxiv.org/abs/math/9804022}{arXiv:math/9804022}) \end{itemize} [[!redirects polynomial Poisson algebras]] \end{document}