\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{poset of commutative subalgebras} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{$(0,1)$-Category theory}}\label{category_theory} [[!include (0,1)-category theory - contents]] \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{operator_algebra}{}\paragraph*{{Operator algebra}}\label{operator_algebra} [[!include AQFT and operator algebra contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{as_a_site_for_noncommutative_geometry}{As a site for noncommutative geometry}\dotfill \pageref*{as_a_site_for_noncommutative_geometry} \linebreak \noindent\hyperlink{as_a_site_for_noncommutative_phase_spaces}{As a site for noncommutative phase spaces}\dotfill \pageref*{as_a_site_for_noncommutative_phase_spaces} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{general_2}{General}\dotfill \pageref*{general_2} \linebreak \noindent\hyperlink{RelationToJordanAlgebras}{Relation to Jordan algebras}\dotfill \pageref*{RelationToJordanAlgebras} \linebreak \noindent\hyperlink{the_presheaf_topos_over_}{The presheaf topos over $ComSub(A)^{op}$}\dotfill \pageref*{the_presheaf_topos_over_} \linebreak \noindent\hyperlink{the_locale_}{The locale $\Sigma(A)$}\dotfill \pageref*{the_locale_} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general_3}{General}\dotfill \pageref*{general_3} \linebreak \noindent\hyperlink{ReferencesRelationToJordanAlgebras}{Relation to Jordan algebras}\dotfill \pageref*{ReferencesRelationToJordanAlgebras} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \hypertarget{general}{}\subsubsection*{{General}}\label{general} For $A$ a an [[associative algebra]], not necessarily [[commutative algebra|commutative]], its collection $ComSub(A)$ of commutative subalgebras $B \hookrightarrow A$ is naturally a [[poset]] under inclusion of subalgebras. \hypertarget{as_a_site_for_noncommutative_geometry}{}\subsubsection*{{As a site for noncommutative geometry}}\label{as_a_site_for_noncommutative_geometry} Various authors have proposed (\hyperlink{ButterfieldHamiltonIsham}{Butterfield-Hamilton-Isham}, \hyperlink{DoeringIsham}{D\"o{}ring-Isham}, \hyperlink{HeunenLandsmanSpitters}{Heunen-Landsmann-Spitters}) that for the case that $A$ is a [[C-star algebra]] the [[noncommutative geometry]] of the [[Isbell duality|formal dual]] [[space]] $\Sigma(A)$ of $A$ may be understood as a commutative [[geometry]] [[internalization|internal]] to a [[sheaf topos]] $\mathcal{T}_A$ over $ComSub(A)$ or its [[opposite category|opposite]] $ComSub(A)^{op}$. An advantage of the latter is that $\Sigma$ becomes a [[compact locale|compact]] [[regular locale]]. \hypertarget{as_a_site_for_noncommutative_phase_spaces}{}\subsubsection*{{As a site for noncommutative phase spaces}}\label{as_a_site_for_noncommutative_phase_spaces} Specifically, consider the case that the algebra $A = B(\mathcal{H})$ is that of [[bounded operator]]s on a [[Hilbert space]]. This is interpreted as an [[algebra of quantum observables]] and the commutative subalgebras are then ``[[classical contexts]]''. Applying [[Bohrification]] to this situation (see there for more discussion), one finds that the [[locale]] $\Sigma(A)$ internal to $\mathcal{T}_A$ behaves like the noncommutative [[phase space]] of a system of [[quantum mechanics]], which however internally looks like an ordinary commutative geometry. Various statements about [[operator algebra]] then have geometric analogs in $\mathcal{T}_A$. Notably the [[Kochen-Specker theorem]] says that $\Sigma(B(\mathcal{H}))$, while nontrivial, has no [[point]]s/no [[global element]]s. (This topos-theoretic geometric reformulation of the Kochen-Specker theorem had been the original motivation for considering $ComSub(A)$ in the first place in \hyperlink{ButterfieldIsham}{ButterfieldIsham}). Moreover, inside $\mathcal{T}_A$ the [[quantum mechanics|quantum mechanical]] kinematics encoded by $B(\mathcal{H})$ looks like [[classical mechanics]] kinematics internal to $\mathcal{T}_A$ (\hyperlink{HeunenLandsmanSpitters}{HeunenLandsmannSpitters}, following \hyperlink{DoeringIsham}{D\"o{}ringIsham}): \begin{enumerate}% \item the [[open subset]]s of $\Sigma(A)$ are identified with the quantum [[state]]s on $A$. Their collection forms the [[Heyting algebra]] of quantum logic. \item [[observable]]s are morphisms of internal [[locale]]s $\Sigma(A) \to IR$, where $IR$ is the [[interval domain]]. \end{enumerate} The assignment to a noncommutative algebra $A$ of a [[locale]] $\underline{\Sigma}_A$ internal to $\mathcal{T}_A$ has been called [[Bohrification]], in honor of [[Nils Bohr]] whose heuristic writings about the nature of [[quantum mechanics]] as being probed by classical (= commutative) context one may argue is being formalized by this construction. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{general_2}{}\subsubsection*{{General}}\label{general_2} \begin{lemma} \label{}\hypertarget{}{} The poset of commutative subalgebras $C(A)$ is always an (unbounded) meet-[[semilattice]]. If $A$ itself is commutative then it is a bounded meet semilattice, with $A$ itself being the top element. \end{lemma} \hypertarget{RelationToJordanAlgebras}{}\subsubsection*{{Relation to Jordan algebras}}\label{RelationToJordanAlgebras} For $A$ an [[associative algebra]] write $A_J$ for its corresponding [[Jordan algebra]], where the commutative product $\circ : A_J \otimes A_J \to A_J$ is the symmetrization of the product in $A$: $a \circ b = \frac{1}{2}(a b + b a)$. \begin{lemma} \label{}\hypertarget{}{} There exist von Neumann algebras $A$, $B$ such that there exists a Jordan algebra isomorphism $A_J \to B_J$ but not an algebra isomorphism $A \to B$. \end{lemma} \begin{proof} By \begin{itemize}% \item [[Alain Connes]], \emph{A factor not anti-isomorphic to itself}, Annals of Mathematics, 101 (1962), no. 3, 536--554. (\href{http://www.jstor.org/stable/1970940}{JSTOR}) \end{itemize} there is a [[von Neumann algebra factor]] $A$ with no algebra isomorphism to its opposite algebra $A^{op}$. But clearly $A_J \simeq (A^{op})_J$. \end{proof} \begin{prop} \label{}\hypertarget{}{} Let $A, B$ be [[von Neumann algebra]]s without a type $I_2$-[[von Neumann algebra factor]]-summand and let $ComSub(A)$, $ComSub(B)$ be their posets of [[commutative C-star-algebra|commutative]] sub-von Neumann algebras. Then every [[isomorphism]] $ComSub(A) \to ComSub(B)$ of [[poset]]s comes from a unique [[Jordan algebra]] isomorphism $A_J \to B_J$. \end{prop} This is the theorem in (\hyperlink{HardingDoering}{Harding-D\"o{}ring}). There is a generalization of this theorem to more general [[C-star algebras]] in (\hyperlink{Hamhalter}{Hamhalter}). For more on this see at \emph{[[Harding-Döring-Hamhalter theorem]]}. \begin{remark} \label{}\hypertarget{}{} This is related to the [[Alfsen-Shultz theorem]], which says that two $C^*$-algebras have the same [[state on an operator algebra|states]] precisely if they are Jordan-isomorphic. \end{remark} \hypertarget{the_presheaf_topos_over_}{}\subsubsection*{{The presheaf topos over $ComSub(A)^{op}$}}\label{the_presheaf_topos_over_} \begin{defn} \label{}\hypertarget{}{} For $A$ a [[C-star algebra]], write $ComSub(A)$ for its [[poset]] of sub-$C^*$-algebras. Write \begin{displaymath} \mathcal{T}_A := [ComSub(A),Set] \end{displaymath} for the [[presheaf topos]] on $ComSub(A)^{op}$. This is alse called the \emph{[[Bohr topos]]}. \end{defn} \begin{remark} \label{}\hypertarget{}{} This opposite order on commutative subalgebras may be seen as the information order from [[Kripke semantics]]: a larger subalgebra contains more information. In this light the presheaf topos on $ComSub(A)$, as used by (\hyperlink{DoeringIsham}{D\"o{}ring-Isham 07}) and co-workers, may be seen as the co-Kripke model. This model is also referred to as the \emph{coarse-graining semantics} of quantum mechanics. See also at \emph{[[spectral presheaf]]}. \end{remark} \begin{lemma} \label{}\hypertarget{}{} The topos $\mathcal{T}_A$ is a [[localic topos]]. \end{lemma} Because $ComSub(A)$ is a [[posite]]. \hypertarget{the_locale_}{}\subsubsection*{{The locale $\Sigma(A)$}}\label{the_locale_} \begin{prop} \label{JordanIsosAndCSubIsos}\hypertarget{JordanIsosAndCSubIsos}{} The [[presheaf]] \begin{displaymath} (\mathbb{A} : B \mapsto U(B)) \;\; \in \mathcal{T}_A \,, \end{displaymath} where $U(B)$ is the underlying [[set]] of the commutative subalgebra $B$, is canonically a commutative $C^*$-algebra [[internalization|internal]] to $\mathcal{T}_A$. \end{prop} This is (\hyperlink{HeunenLandsmanSpitters}{HeunenLandsmanSpitters, theorem 5}). \begin{cor} \label{}\hypertarget{}{} By the [[constructive Gelfand duality theorem]] there is uniquely a [[locale]] $\Sigma(A)$ internal to $\mathcal{T}_A$ such that $\mathbb{A}$ is the internal commutative $C^*$-algebra of functions on $\Sigma(A)$. \end{cor} This observation is amplified in (\hyperlink{HeunenLandsmanSpitters}{HeunenLandsmanSpitters}). \begin{prop} \label{}\hypertarget{}{} If $A = \mathcal{B}(H)$ is the algebra of [[bounded operator]]s on a [[Hilbert space]] $H$ of [[dimension]] $\gt 2$, then then [[Kochen-Specker theorem]] implies that $\Sigma(A)$ has no points/no [[global element]]. \end{prop} This is (\hyperlink{HeunenLandsmanSpitters}{HeunenLandsmanSpitters, theorem 6}), following (\hyperlink{ButterfieldHamiltonIsham}{Butterfield-Hamilton-Isham}). \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general_3}{}\subsubsection*{{General}}\label{general_3} The proposal that the the noncommutative geometry of $A$ is fruitfully studied via the commutative geometry over $ComSub(A)$ goes back to \begin{itemize}% \item [[Jeremy Butterfield]], John Hamilton, [[Chris Isham]], \emph{A topos perspective on the Kochen-Specker theorem} \emph{I. quantum states as generalized valuations} International Journal of Theoretical Physics, 37(11):2669--2733, 1998. \emph{II. conceptual aspects and classical analogues} International Journal of Theoretical Physics, 38(3):827--859, 1999 \emph{III. Von Neumann algebras as the base category} International Journal of Theoretical Physics, 39(6):1413--1436, 2000. \end{itemize} The proposal that the non-commutativity of the [[phase space]] in [[quantum mechanics]] is fruitfully understood in the light of this has been amplified in a series of articles \begin{itemize}% \item [[Andreas Döring]], [[Chris Isham]], \emph{A topos foundation for theories of physics} Journal of Mathematical Physics (2008) \end{itemize} The presheaf topos on $ComSub(A)^{op}$ ([[Bohr topos]]) and its internal localic Gelfand dual to $A$ is discussed in \begin{itemize}% \item [[Chris Heunen]], [[Klaas Landsman]], [[Bas Spitters]], \emph{A topos for algebraic quantum theory} (\href{http://arxiv.org/abs/0709.4364}{arXiv:0709.4364}) \end{itemize} See also [[higher category theory and physics]]. \hypertarget{ReferencesRelationToJordanAlgebras}{}\subsubsection*{{Relation to Jordan algebras}}\label{ReferencesRelationToJordanAlgebras} The \hyperlink{RelationToJordanAlgebras}{relation to Jordan algebras} of $ComSub(A)$ is discussed in \begin{itemize}% \item [[John Harding]], [[Andreas Döring]], \emph{Abelian subalgebras and the Jordan structure of a von Neumann algebra} (\href{http://arxiv.org/abs/1009.4945}{arXiv:1009.4945}) \end{itemize} for $A$ a [[von Neumann algebra]] and more generally for $A$ a [[C\emph{-algebra]] in} \begin{itemize}% \item [[Jan Hamhalter]], \emph{Isomorphisms of ordered structures of abelian $C^\ast$-subalgebras of $C^\ast$-algebras}, J. Math. Anal. Appl. 383 (2011) 391--399, doi:\href{https://dx.doi.org/10.1016/j.jmaa.2011.05.035}{10.1016/j.jmaa.2011.05.035} \end{itemize} See at \emph{[[Harding-Döring-Hamhalter theorem]]}. [[!redirects semilattice of commutative subalgebras]] \end{document}