\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{power series} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{polynomials}{Polynomials}\dotfill \pageref*{polynomials} \linebreak \noindent\hyperlink{taylor_series}{Taylor series}\dotfill \pageref*{taylor_series} \linebreak \noindent\hyperlink{maclaurin_series}{MacLaurin series}\dotfill \pageref*{maclaurin_series} \linebreak \noindent\hyperlink{laurent_series}{Laurent series}\dotfill \pageref*{laurent_series} \linebreak \noindent\hyperlink{puiseux_series}{Puiseux series}\dotfill \pageref*{puiseux_series} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{functional_substitution_and_inversion}{Functional substitution and inversion}\dotfill \pageref*{functional_substitution_and_inversion} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A power series in a [[variable]] $X$ and with [[coefficients]] in a [[ring]] $R$ is a [[series]] of the form \begin{displaymath} \sum_{n = 0}^\infty a_n X^n \end{displaymath} where $a_n$ is in $R$ for each $n\ge 0$. Given that there are no additional convergence conditions, a power series is also termed emphatically as a \textbf{formal power series}. If $R$ is commutative, then the collection of formal power series in a variable $X$ with coefficients in $R$ forms a commutative ring denoted by $R [ [ X ] ]$. More generally, a power series in $k$ commuting variables $X_1,\ldots, X_k$ with coefficients in a ring $R$ has the form $\sum_{n_1=0,n_2=0,\ldots, n_k = 0}^\infty a_{n_1\ldots n_k} X_1^{n_1} X_2^{n_2}\cdots X_k^{n_k}$. If $R$ is commutative, then the collection of formal power series in $k$ commuting variables $X_1,\ldots, X_k$ form a formal power series ring denoted by $R [ [ X_1,\ldots, X_k ] ]$. More generally, we can consider noncommutative (associative unital) ring $R$ and words in noncommutative variables $X_1,\ldots, X_k$ of the form \begin{displaymath} w = X_{i_1}\cdots X_{i_m} \end{displaymath} (where $m$ has nothing to do with $k$) and with coefficient $a_w \in R$ (here $w$ is a word of any length, not a multiindex in the previous sense). Thus the power sum is of the form $\sum_w a_w X_w$ and they form a formal power series ring in variables $X_1,\ldots, X_k$ denoted by $R\langle \langle X_1,\ldots, X_k \rangle\rangle$. Furthermore, $R$ can be even a noncommutative [[semiring]] in which case the words belong to the free monoid on the set $S = \{ X_1,\ldots, X_k\}$, the partial sums are then belong to a monoid semiring $R\langle S\rangle$. The formal power series then also form a semiring, by the multiplication rule \begin{displaymath} \sum_{r} a_r X_r \cdot \sum b_s X_s = \sum_w \sum_{u,v; w = u v} a_u b_v X_w \end{displaymath} Of course, this implies that in a specialization, $b$-s commute with variables $X_{i_k}$; what is usually generalized to take some endomorphisms into an account (like at noncommutative polynomial level of partial sums where we get skew-polynomial rings, i.e. iterated Ore extensions). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{polynomials}{}\subsubsection*{{Polynomials}}\label{polynomials} For a natural number $k$, a power series $\sum_{n=0}^\infty a_n X^n$ such that $a_n = 0$ for all $n \gt k$ is a [[polynomial]] of degree at most $k$. \hypertarget{taylor_series}{}\subsubsection*{{Taylor series}}\label{taylor_series} \begin{itemize}% \item [[Taylor series]] \end{itemize} \hypertarget{maclaurin_series}{}\subsubsection*{{MacLaurin series}}\label{maclaurin_series} For $f \in C^\infty(\mathbb{R})$ a [[smooth function]] on the [[real line]], and for $f^{(n)} \in C^\infty(\mathbb{R})$ denoting its $n$th [[derivative]] its [[MacLaurin series]] (its [[Taylor series]] at $0$) is the power series \begin{displaymath} \sum_{n = 0}^\infty \frac{1}{n!} f^{(n)}(0) x^n \,. \end{displaymath} If this power series [[convergence|converges]] to $f$, then we say that $f$ is \emph{[[analytic function|analytic]]}. \hypertarget{laurent_series}{}\subsubsection*{{Laurent series}}\label{laurent_series} \begin{itemize}% \item [[Laurent series]] \end{itemize} \hypertarget{puiseux_series}{}\subsubsection*{{Puiseux series}}\label{puiseux_series} \begin{itemize}% \item [[Puiseux series]] \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{itemize}% \item An element $a = a_0 + a_1 x + a_2 x^2 + \ldots$ in $R[ [x] ]$ is (multiplicatively) invertible iff $a_0$ is invertible. \end{itemize} This follows easily from the observation that we can invert $1 + x b$ for any power series $b$ by forming $1 - x b + x^2 b^2 - \ldots$ and collecting only finitely many terms in each degree. As a simple corollary, \begin{itemize}% \item If $R$ is a [[local ring]], then the power series ring $R[ [X] ]$ is also a local ring. \end{itemize} \hypertarget{functional_substitution_and_inversion}{}\subsubsection*{{Functional substitution and inversion}}\label{functional_substitution_and_inversion} \begin{prop} \label{}\hypertarget{}{} $R[ [x_1, \ldots, x_n] ]$ equipped with the ideal $(x_1, \ldots, x_n)$ is the free [[formal group law|adic]] $R$-algebra on $n$ generators, in the sense that it is the value of the left adjoint $Pow$ to the forgetful functor \begin{displaymath} Ideal: AdicRAlg \to Set: (A, I) \mapsto I \end{displaymath} as applied to the set $\{x_1, \ldots, x_n\}$. \end{prop} \begin{proof} The idea is that for each adic $R$-algebra $(S, I)$ and element $(s_1, \ldots s_n) \in I^n$, there is a unique adic algebra map $R[ [x_1, \ldots, x_n] ] \to S$ that sends $x_i$ to $s_i$; this adic algebra map sends a power series $\sum a_{k_1, \ldots, k_n} x_1^{k_1} x_n^{k_n}$ to the sequence of truncations \begin{displaymath} \left(\sum_{k_1 + \ldots + k_n \lt k} a_{k_1, \ldots, k_n} s_1^{k_1} \ldots s_n^{k_n} \mod I^k\right)_k \end{displaymath} belonging to $\underset{\longleftarrow}{\lim}_k S/I^k \cong S$. \end{proof} It follows that we may define a clone or cartesian operad as follows: the $n^{th}$ component is the set $I_n = (x_1, \ldots, x_n) \subset R[ [x_1, \ldots, x_n] ]$ which is the monad value $Ideal Pow(\{x_1, \ldots, x_n\})$. Letting $M$ denote the monad $Ideal \circ Pow$, with monad multiplication $\mu$, and $[n]$ the set $\{x_1, \ldots, x_n\}$, the clone multiplication \begin{displaymath} I_n \times I_k^n \to I_k \end{displaymath} is the composition of the maps \begin{displaymath} M(n) \times M(k)^n \cong M(n) \times \hom([n], M(k)) \stackrel{1 \times func}{\to} M(n) \times \hom(M(n), M M(k)) \stackrel{eval}{\to} M M(k) \stackrel{\mu(k)}{\to} M(k) \end{displaymath} The clone multiplication thus defined is called \emph{substitution of power series}; it takes a tuple consisting of $p(x_1, \ldots, x_n) \in I_n, q_1(x_1, \ldots x_k) \in I_k, \ldots q_n(x_1, \ldots, x_k) \in I_k)$ to a power series denoted as \begin{displaymath} p(q_1(x_1, \ldots, x_k), \ldots q_n(x_1, \ldots, x_k)). \end{displaymath} The resulting clone or operad yields, in the particular case $k = n = 1$, an associative substitution operation \begin{displaymath} x R[ [x] ] \times x R[ [x] ] \stackrel{sub}{\to} x R[ [x] ] \end{displaymath} with $sub(p, q) = p \circ q$ the power series $p(q(x))$. \begin{prop} \label{}\hypertarget{}{} The group of invertible elements in the substitution monoid $x R[ [x] ]$ consists of power series of the form $a_1 x + a_2 x^2 + \ldots$ where $a_1$ is multiplicatively invertible in the ring $R$. \end{prop} In other words, we can functionally invert a power series provided that the linear coefficient $a_1$ is invertible in $R$. \begin{proof} Given power series $a = a_1 x + a_2 x^2 + \ldots$ and $b = b_1 x + b_2 x^2 + \ldots$, we may read off coefficients of the composite $a \circ b$ as \begin{displaymath} (a \circ b)_k = \sum_{n \geq 1} a_n \sum_{k = k_1 + \ldots + k_n} b_{k_1} b_{k_2} \ldots b_{k_n} \end{displaymath} where in particular $(a \circ b)_1 = a_1 b_1$. Now $a$ is the left functional inverse of $b$, or $b$ is the right inverse of $a$, if $(a \circ b)(x) = x$, i.e., if $(a \circ b)_k = 1$ if $k = 1$ and $0$ otherwise. The first equation says simply $(a \circ b)_1 = a_1 b_1 = 1$ which implies $a_1$ is invertible. Conversely, if $a_1$ is multiplicatively invertible and $b_1 = a_1^{-1}$, then the equations \begin{displaymath} \itexarray{ \sum_{n \geq 1} a_n \sum_{k = k_1 + \ldots + k_n} b_{k_1} b_{k_2} \ldots b_{k_n} & = 1\; if\; k = 1 \\ & = 0\; if\; k \neq 1 } \end{displaymath} may be uniquely solved for the remaining $a_i$'s given the $b_j$'s, and uniquely solved for the remaining $b_j$'s given the $a_i$'s, by an inductive procedure: for $k \neq 1$ we have \begin{displaymath} a_1 b_k + a_k b_1^k + \; terms\; a_n b_{k_1} \ldots b_{k_n} = 0 \end{displaymath} and this allows us to solve for $b_k$, \begin{displaymath} b_k = -a_1^{-1}(a_k b_1^k + \; terms\; a_n b_{k_1} \ldots b_{k_n}) \end{displaymath} given the values $a_1, \ldots, a_k$ and earlier $b$-values $b_{k_j}$ for $k_j \lt k$ given by inductive hypothesis. Similarly we can solve for $a_k$ in terms of given coefficients $b_1, \ldots, b_k$ and earlier $a$-values $a_n$, $n \lt k$. Thus every power series $a$ has a right inverse if $a_1^{-1}$ exists, and $b$ has a left inverse if $b_1^{-1}$ exists, and this completes the proof. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[convergence radius]] \item [[asymptotic series]], [[transseries]] \item [[Tate algebra]] \item [[characteristic series]] \item \href{formal+scheme#FormalPowerSeries}{power series and their formal spectra} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Wikipedia, \emph{\href{en.wikipedia.org/wiki/Formal_power_series}{Formal power series}} \end{itemize} A formalization in [[homotopy type theory]] and there in [[Coq]] is discussed in section 4 of \begin{itemize}% \item \'A{}lvaro Pelayo, [[Vladimir Voevodsky]], [[Michael Warren]], \emph{A preliminary univalent formalization of the p-adic numbers} (\href{http://arxiv.org/abs/1302.1207}{arXiv:1302.1207}) \end{itemize} The discussion of the differentiation of a converging power series term by term is at \begin{itemize}% \item Tim Gowers's blog: \href{https://gowers.wordpress.com/2014/02/22/differentiating-power-series}{differentiating-power-series} \end{itemize} category: analysis, algebra [[!redirects power series]] [[!redirects formal power series]] [[!redirects power series ring]] [[!redirects power series rings]] [[!redirects formal power series ring]] [[!redirects formal power series rings]] [[!redirects formal power series algebra]] [[!redirects formal power series algebras]] \end{document}