\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{pre-Lie algebra} \hypertarget{prelie_algebras}{}\section*{{Pre-Lie algebras}}\label{prelie_algebras} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{relation_to_the_work_of_connes_and_kreimer}{Relation to the work of Connes and Kreimer}\dotfill \pageref*{relation_to_the_work_of_connes_and_kreimer} \linebreak \noindent\hyperlink{selfreferentiality}{Self-referentiality}\dotfill \pageref*{selfreferentiality} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{pre-Lie algebra} is a [[vector space]] $A$ equipped with a bilinear operation $\cdot: A \times A \to A$ such that \begin{equation} [L_a, L_b] = L_{[a,b]} \label{basic_identity}\end{equation} for all $a, b\in A$. Here $L_a$ is the operation of left multiplication by $a$: \begin{displaymath} L_a b = a \cdot b \end{displaymath} and $[L_a, L_b]$ is the usual commutator of operators using [[composition]]: \begin{displaymath} [L_a, L_b] = L_a L_b - L_b L_a \end{displaymath} while $[a,b]$ is the commutator defined using the $\cdot$ operation: \begin{equation} [a,b] = a \cdot b - b \cdot a \label{torsion_free_identity}\end{equation} Unravelling this, we see a pre-Lie algebra is vector space $A$ equipped with a bilinear operation $\cdot: A \times A \to A$ such that \begin{equation} a \cdot (b \cdot c) - b \cdot (a \cdot c) = (a \cdot b) \cdot c - (b \cdot a) \cdot c \label{identity}\end{equation} More precisely, this is a \textbf{left} pre-Lie algebra. We can also define right pre-Lie algebras. Every [[associative algebra]] is a pre-Lie algebra, but not conversely. The reason pre-Lie algebras have the name they do is that this weakening of the concept of associative algebra is still enough to give a [[Lie algebra]]! In other words: it is well-known that if $A$ is an associative algebra, the operation \begin{displaymath} [a,b] = a \cdot b - b \cdot a \end{displaymath} makes $A$ into a Lie algebra. But this is also true for pre-Lie algebras! It is a fun exercise to derive the [[Jacobi identity]] from equation \eqref{identity}. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} First, given a [[manifold]] with a flat torsion-free [[connection]] $\nabla$ on its [[tangent bundle]], we can make the space of [[tangent vector fields]] into a pre-Lie algebra by defining \begin{displaymath} v \cdot w = \nabla_v w \end{displaymath} The definition of `flat' is precisely \eqref{basic_identity}, whereas that of `torsion-free' is precisely \eqref{torsion_free_identity}. The Lie algebra arising from this pre-Lie algebra is just the usual Lie algebra of vector fields. Second, suppose $O$ is a [[linear operad]], and let $A$ be the free $O$-[[algebra of an operad|algebra]] on one generator. As a vector space we have \begin{displaymath} A = \bigoplus_{n} O_n/S_n \, . \end{displaymath} Here $S_n$ is the [[symmetric group]], which acts on the space $O_n$ of $n$-ary operations of $O$. Moreover, $A$ becomes a pre-Lie algebra in a manner described here: \begin{itemize}% \item Dominique Manchon, \href{http://math.univ-bpclermont.fr/~manchon/biblio/ESI-prelie2009.pdf}{A short survey on pre-Lie algebras} \end{itemize} Third, the [[Hochschild cohomology|Hochschild]] [[chain complex]] of any associative algebra, with grading shifted down by one, can be given the structure of a `[[graded object|graded]] pre-Lie algebra', as discovered by Gerstenhaber and described here: \begin{itemize}% \item Justin Thomas, \href{http://www.math.northwestern.edu/~jdthomas/Talk%20Notes/Hoch%20Cohomology.pdf}{Graduate student seminar: Hochschild cohomology} \end{itemize} In fact it was Gerstenhaber who coined the term `pre-Lie algebra', for this reason. \hypertarget{relation_to_the_work_of_connes_and_kreimer}{}\subsection*{{Relation to the work of Connes and Kreimer}}\label{relation_to_the_work_of_connes_and_kreimer} Connes and Kreimer formalized the process of \href{http://ncatlab.org/nlab/show/renormalization#hopfalgebraic_renormalization_3}{renormalization} using a certain [[Hopf algebra]] built from [[Feynman diagram]]s. More abstractly we can understand the essence of their construction using a Hopf algebra built from rooted trees, as explained here: \begin{itemize}% \item John Baez, This Week's Finds in Mathematical Physics, Week 299. (\href{http://math.ucr.edu/home/baez/week299.html}{web}) (\href{http://golem.ph.utexas.edu/category/2010/06/this_weeks_finds_in_mathematic_60.html}{blog}) \end{itemize} The key is to form the free pre-Lie algebra on one generator, then turn this into a Lie algebra as described above, and then form the universal enveloping of that, which is a cocommutative Hopf algebra. Finally, the restricted dual of this cocommutative Hopf algebra is the commutative Hopf algebra considered by Connes and Kreimer here: \begin{itemize}% \item Alain Connes and Dirk Kreimer, Hopf algebras, renormalization and noncommutative geometry, \emph{Commun. Math. Phys.} \textbf{199} (1998), 203--242 (\href{http://arxiv.org/abs/hep-th/9808042}{arXiv}) \end{itemize} Pre-Lie algebras are algebras of a [[linear operad]] called $PL$. The space $PL_n$ has a basis given by labelled rooted [[trees]] with $n$ vertices, and the $i$th partial composite $s \circ_i t$ is given by summing all the possible ways of inserting the tree $t$ inside the tree $s$ at the vertex labelled $i$. For details see: \begin{itemize}% \item Fr\'e{}d\'e{}ric Chapoton, Muriel Livernet, Pre-Lie algebras and the rooted trees operad, \emph{Int. Math. Res. Not.} 2001 (2001), 395-408. \end{itemize} The free pre-Lie algebra on one generator is thus \begin{displaymath} \bigoplus_{n} PL_n /S_n \, \end{displaymath} so the description of $PL_n$ in terms of rooted trees gives a kind of `explanation' of the relation between the Connes--Kreimer Hopf algebra and rooted trees. \hypertarget{selfreferentiality}{}\subsection*{{Self-referentiality}}\label{selfreferentiality} Pre-Lie algebras have a strange self-referential feature. Every operad of a large class gives a pre-Lie algebra, but the operad for pre-Lie algebras is one of this class! This raises the following interesting puzzle. As we have seen above, for any linear operad $O$, the free $O$-algebra with one generator becomes a pre-Lie algebra. But the operad for pre-Lie algebra is an operad of this type. So, the free pre-Lie algebra on one generator becomes a pre-Lie algebra in this way. But of course it already \emph{is} a pre-Lie algebra! Do these pre-Lie structures agree? The answer is \emph{no.} For an explanation, see page 7 here: \begin{itemize}% \item Dominique Manchon, A short survey on pre-Lie algebras. (\href{http://math.univ-bpclermont.fr/~manchon/biblio/ESI-prelie2009.pdf}{pdf}) \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The best overall introduction to pre-Lie algebras seems to be that by Dominique Manchon, cited above. For two more introductions, try the following: \begin{itemize}% \item John Baez, This Week's Finds in Mathematical Physics, Week 299. (\href{http://math.ucr.edu/home/baez/week299.html}{web}) (\href{http://golem.ph.utexas.edu/category/2010/06/this_weeks_finds_in_mathematic_60.html}{blog}) \item Fr\'e{}d\'e{}ric Chapoton, Operadic point of view on the Hopf algebra of rooted trees. (\href{http://www-math.unice.fr/~patras/CargeseConference/ACQFT09_FredericCHAPOTON.pdf}{pdf}) \end{itemize} \end{document}