\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{pregroup grammar} [[!redirects pregroup]] [[!redirects pregroups]] [[!redirects pregroup grammars]] [[!redirects Pregroup grammar]] [[!redirects Pregroup grammars]] \textbf{Pregroup grammar} is a mathematical model of natural language grammar introduced by [[Lambek]], it is part of the [[categorial grammar]] tradition. \noindent\hyperlink{pregroups}{Pregroups}\dotfill \pageref*{pregroups} \linebreak \noindent\hyperlink{free_pregroups_and_the_switching_lemma}{Free pregroups and the switching lemma}\dotfill \pageref*{free_pregroups_and_the_switching_lemma} \linebreak \noindent\hyperlink{from_pregroups_to_compact_2categories}{From pregroups to compact 2-categories}\dotfill \pageref*{from_pregroups_to_compact_2categories} \linebreak \noindent\hyperlink{PregroupGrammar}{Pregroup grammars as free rigid monoidal categories}\dotfill \pageref*{PregroupGrammar} \linebreak \noindent\hyperlink{pregroup_semantics_as_strong_monoidal_functors}{Pregroup semantics as strong monoidal functors}\dotfill \pageref*{pregroup_semantics_as_strong_monoidal_functors} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{pregroups}{}\subsection*{{Pregroups}}\label{pregroups} As defined in \hyperlink{Lambek99}{Lambek 1999}, \hyperlink{Lambek08}{Lambek 2008}, a \textbf{pregroup} is a [[partial order|partially-ordered]] [[monoid]] $(P, \leq, \cdot, 1)$ such that every object $t \in P$ has [[category with duals|left- and right-adjoints]] $t^l, t^r \in P$. Explicitly we have the following four axioms: \begin{itemize}% \item $t^l t \leq 1, \quad t t^r \leq 1 \quad$ (contraction) \item $1 \leq t t^l, \quad 1 \leq t^r t \quad$ (expansion) \end{itemize} In other words, a pregroup is a [[rigid monoidal category]] which is [[thin category|thin]] and [[skeletal category|skeletal]]. Note that a commutative pregroup is simply a [[group]]. Here are a few variants of pregroups that appear in the literature, see \hyperlink{Coecke13}{Coecke 2013}: \begin{itemize}% \item If we drop the anti-symmetry axiom for posets, we get a \textbf{quasi-pregroup}, \item If we drop the two expansion axioms, we get a \textbf{protogroup}. \end{itemize} \hypertarget{free_pregroups_and_the_switching_lemma}{}\subsubsection*{{Free pregroups and the switching lemma}}\label{free_pregroups_and_the_switching_lemma} In [[linguistics|linguistic]] applications, one starts with a [[partial order|poset]] $B = \{ s, n, \dots \}$ of \textbf{basic types} (e.g. sentence and noun) and then takes the free pregroup $P_B$ generated by $B$. For a basic type $b \in B$, iterated adjoints $\dots, b^{ll}, b^l, b, b^r, b^{rr}, \dots \in P_B$ are called \textbf{simple types}; an arbitrary type $t \in P_B$ may then be given as a sequence of simple types. The following lemma makes the parsing problem for free pregroups decidable --- i.e. given a sentence type $s \in P_B$ and the types for a sequence of words $t_1, \dots, t_n \in P_B$, is $t_1 \dots t_n \leq s$? \textbf{Switching lemma (\hyperlink{Lambek99}{Lambek 1999}):} For any pair of types $t, t' \in P_B$, if $t \leq t'$ then there is a type $t'' \in P_B$ such that $t \leq t''$ without expansions and $t'' \leq t'$ without contractions, i.e. free protogroups recognise the same language as free pregroups. \hypertarget{from_pregroups_to_compact_2categories}{}\subsubsection*{{From pregroups to compact 2-categories}}\label{from_pregroups_to_compact_2categories} In \hyperlink{PrellerLambek07}{Preller, Lambek 2007}, Preller and Lambek generalise the free pregroup construction above to free compact 2-categories in order to capture [[proof relevance]]. This allows to distinguish between the distinct parsings of ambiguous phrases such as ``(men and women) who like maths'' vs. ``men and (women who like maths)''. Note that the compact 2-categories of Lambek and Preller differ from [[compact closed 2-category]] in that they are not required to be symmetric. A non-symmetric compact closed 2-category with one object is simply a [[rigid monoidal category]]. Given a poset of basic types $B$, the objects of the free rigid monoidal category $C_B$ are the same as that of the free (quasi-)pregroup, the arrows may be described as planar [[string diagram|string diagrams]]. Given two types $t, t' \in P_B$, we have that $t \leq t'$ if and only if there is an arrow $r : t \to t'$ in $C_B$. \hypertarget{PregroupGrammar}{}\subsection*{{Pregroup grammars as free rigid monoidal categories}}\label{PregroupGrammar} A \textbf{pregroup grammar} is a tuple $G = (B, \Sigma, \Delta, s)$ where $B$ and $\Sigma$ are finite sets called the \emph{basic types} and the \emph{vocabulary} respectively, $\Delta \subseteq \Sigma \times P_B$ is a relation called the \emph{dictionnary} and $s \in P_B$ is a designated \emph{sentence type}. We require that $\Delta$ is finite, i.e. the set of possible types $\Delta(w) \subseteq P_B$ is finite for each word $w \in \Sigma$. The \emph{language} of $G$ is then given by: \begin{displaymath} L(G) = \big\{ w_1 \dots w_n \in \Sigma^n \vert n \in \mathbb{N}, \quad \exists t \in \prod_{i \leq n} \Delta(w_i) \quad t \leq s \big\} \end{displaymath} i.e. a sequence of words $w_1 \dots w_n \in \Sigma^n$ is said to be grammatical whenever there is a dictionnary entry $(w_i, t_i) \in \Delta$ for each word $w_i$ such that $t_1 \dots t_n \leq s$. One may simplify this by redefining $L(G) = \big\{ w_1 \dots w_n \in \Sigma^n \vert C_G(w_1 \dots w_n, s) \neq \emptyset \big\}$ where $C_G$ is the free [[rigid monoidal category]] with: \begin{itemize}% \item generating objects the [[disjoint union]] $B + \Sigma$, \item generating arrows the dictionnary entries $(w, t) \in \Delta$ with $dom(w, t) = w$ and $cod(w, t) = t$. \end{itemize} That is, a sequence of words is grammatical whenever there exists a string diagram going from the sequence of words to the sentence type. Note that traditionally the identity wires for words $w \in \Sigma$ are omitted, hence dictionnary entries are depicted as triangles with no input. Contractions are depicted as cups, e.g. from $(Alice, n), (loves, n^r s n^l), (Bob, n) \in \Delta$ and $n n^r s n^l n \leq s$ we get the following diagram: $\backslash$begin\{centre\} $\backslash$begin\{tikzpicture\} $\backslash$node (0) at (-6, 0) \{\}; $\backslash$node (1) at (-5, 1) \{\}; $\backslash$node (2) at (-4, 0) \{\}; $\backslash$node (3) at (-5, 0) \{\}; $\backslash$node (4) at (-3, 0) \{\}; $\backslash$node (5) at (-2, 1) \{\}; $\backslash$node (6) at (-1, 0) \{\}; $\backslash$node (7) at (-2.5, 0) \{\}; $\backslash$node (8) at (-1.5, 0) \{\}; $\backslash$node (9) at (0, 0) \{\}; $\backslash$node (10) at (1, 1) \{\}; $\backslash$node (11) at (2, 0) \{\}; $\backslash$node (12) at (1, 0) \{\}; $\backslash$node (13) at (-5, 0.25) \{Alice\}; $\backslash$node (14) at (-2, 0.25) \{loves\}; $\backslash$node (15) at (1, 0.25) \{Bob\}; $\backslash$node (16) at (-5.25, -0.5) \{$n$\}; $\backslash$node (17) at (-3, -0.5) \{$n^r$\}; $\backslash$node (18) at (-1, -0.5) \{$n^l$\}; $\backslash$node (19) at (1.25, -0.5) \{$n$\}; $\backslash$node (20) at (-2, 0) \{\}; $\backslash$node (21) at (-2, -1.5) \{\}; $\backslash$node (22) at (-1.75, -1.25) \{$s$\}; \begin{verbatim} \draw [bend right=90, looseness=1.50] (3.center) to (7.center); \draw [bend right=90, looseness=1.50] (8.center) to (12.center); \draw (0.center) to (1.center); \draw (1.center) to (2.center); \draw (2.center) to (0.center); \draw (4.center) to (5.center); \draw (5.center) to (6.center); \draw (6.center) to (4.center); \draw (9.center) to (10.center); \draw (10.center) to (11.center); \draw (11.center) to (9.center); \draw (20.center) to (21.center);\end{verbatim} $\backslash$end\{tikzpicture\} $\backslash$end\{centre\} \textbf{Theorem (\hyperlink{BuszkowskiMoroz08}{Buszkowski, Moroz 2008}):} For each pregroup grammar $G$, there is a [[context-free grammar]] $G'$ such that $L(G) = L(G')$. Furthermore, $G'$ may be computed in time polynomial in the size of $G$. The opposite direction also holds, hence pregroup grammar and [[context-free grammar]] are said to be \textbf{weakly equivalent}: the translation preserves only the generated languages, it does not preserve the structure of syntax trees. \hypertarget{pregroup_semantics_as_strong_monoidal_functors}{}\subsection*{{Pregroup semantics as strong monoidal functors}}\label{pregroup_semantics_as_strong_monoidal_functors} One may give a [[semantics]] to a pregroup grammar $G = (B, \Sigma, \Delta, s)$ by defining a strong [[monoidal functor]] $F : C_G \to S$, where $C_G$ is the free [[rigid monoidal category]] described in \hyperlink{PregroupGrammar}{section 2}. $S$ is a suitable [[rigid monoidal category]], e.g. $\text{FdVect}$ or $\text{Rel}$, depending on the application. Note the similarity with a [[Lawvere theory]] as a monoidal functor from a syntactic category to $\text{Set}$. We require the image for all words $w \in \Sigma$ to be the monoidal unit $F(w) = I$, hence the image for each dictionnary entry $(w, t) \in \Delta$ is given by a state $F(w, t) : I \to F(t)$. The meaning $F(r) : I \to F(s)$ for a sentence $w_1 \dots w_n \in \Sigma^n$ with grammatical reduction $r : w_1 \dots w_n \to s$ may then be computed from the individual meanings $F(w_i, t_i) : I \to F(t_i)$ of the words, following [[Gottlob Frege|Frege's]] principle of [[compositionality]]. This has been developed in \hyperlink{Preller05}{Preller 2005} as well as in a series of papers by [[Bob Coecke]] and others, see [[categorical compositional distributional semantics]]. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Joachim Lambek, \emph{Type Grammar Revisited}, Logical Aspects of Computational Linguistics (1999) \item Anne Preller, \emph{Category Theoretical Semantics for Pregroup Grammars}, Logical Aspects of Computational Linguistics, 5th International Conference, LACL 2005 (\href{https://www.researchgate.net/publication/220718685_Category_Theoretical_Semantics_for_Pregroup_Grammars}{pdf}) \item Anne Preller, Joachim Lambek, \emph{Free Compact 2-Categories}, Mathematical Structures in Computer Science, Cambridge University Press (CUP), 2007 (\href{https://hal-lirmm.ccsd.cnrs.fr/lirmm-00137681v2/document}{pdf}) \item Joachim Lambek, \emph{From Word to Sentence: A Computational Algebraic Approach to Grammar}, Polimetrica 2008 (\href{http://www.math.mcgill.ca/barr/lambek/pdffiles/2008lambek.pdf}{pdf}) \item Wojciech Buszkowski, Katarzyna Moroz, \emph{Pregroup Grammars and Context-free Grammars}, Computational Algebraic Approaches to Natural Language, Polimetrica (2008) (\href{https://pdfs.semanticscholar.org/1924/30f2252b6e0a7f982a3ae69a3ccf9c2981c0.pdf}{pdf}) \item Bob Coecke, \emph{An alternative Gospel of structure: order, composition, processes}, Introductory chapter to C. Heunen, M. Sadrzadeh, and E. Grefenstette. Quantum Physics and Linguistics: A Compositional, Diagrammatic Discourse. Oxford University Press, 2013 (\href{https://arxiv.org/abs/1307.4038}{arxiv:1307.4038}) \end{itemize} \end{document}