\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{premonoidal category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{monoidal_categories}{}\paragraph*{{Monoidal categories}}\label{monoidal_categories} [[!include monoidal categories - contents]] \hypertarget{premonoidal_categories}{}\section*{{Premonoidal categories}}\label{premonoidal_categories} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{slick_version}{Slick version}\dotfill \pageref*{slick_version} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A premonoidal category is a generalisation of a [[monoidal category]], applied by [[John Power]] and his collaborators to [[denotational semantics]] in [[computer science]]. There, the [[Kleisli category]] of a [[strong monad]] provides a model of [[call-by-value]] programming languages. In general, if the original category is monoidal, the Kleisli category will only be premonoidal. Recall that a [[bifunctor]] from $C$ and $D$ to $E$ (for $C,D,E$ [[categories]]) is simply a [[functor]] to $E$ from the [[product category]] $C \times D$. We can think of this as an operation which is `jointly functorial'. But just as a [[function]] to $X$ from $Y$ and $Z$ (for $X,Y,Z$ [[topological spaces]]) may be [[continuous map|continuous]] in each variable yet not [[jointly continuous function|jointly continuous]] (continuous from the [[Tychonoff product]] $Y \times Z$), so an operation between categories can be functorial in each variable separately yet not jointly functorial. Recall that a [[monoidal category]] is a [[category]] $C$ equipped with a bifunctor $C \times C \to C$ (equipped with [[extra structure]] such as the [[associator]]). Similarly, a premonoidal category is a category equipped with an operation $C \times C \to C$, which is (at least) a [[function]] on [[objects]] as shown, but one which is functorial only in each variable separately. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{binoidal category} is a [[category]] $C$ equipped with \begin{itemize}% \item for each pair $x,y$ of [[objects]] of $C$, an object $x \otimes y$; \item for each object $x$ a [[functor]] $x \rtimes -$ whose action on objects sends $y$ to $x \otimes y$ \item for each object $x$ a [[functor]] $- \ltimes x$ whose action on objects sends $y$ to $y \otimes x$ \end{itemize} A [[morphism]] $f\colon x \to y$ in a binoidal category is \textbf{central} if, for every morphism $f'\colon x' \to y'$, the diagrams \begin{displaymath} \array { x \otimes x' & \overset{x \rtimes f'}\to & x \otimes y' \\ \mathllap{f \ltimes x'}\downarrow & & \downarrow\mathrlap{f \ltimes y'} \\ y \otimes x' & \underset{y \rtimes f'}\to & y \otimes y' \\ } \end{displaymath} and \begin{displaymath} \array { x' \otimes x & \overset{x' \rtimes f}\to & x' \otimes y \\ \mathllap{f' \ltimes x}\downarrow & & \downarrow\mathrlap{f' \ltimes y} \\ y' \otimes x & \underset{y' \rtimes f}\to & y' \otimes y \\ } \end{displaymath} commute. In this case, we denote the common composites $f \otimes f'\colon x \otimes x' \to y \otimes y'$ and $f' \otimes f\colon x' \otimes x \to y' \otimes y$. A \textbf{premonoidal category} is a binoidal category equipped with: \begin{itemize}% \item an object $I$; \item for each triple $x,y,z$ of objects, a central [[isomorphism]] $\alpha_{x,y,z}\colon (x \otimes y) \otimes z \to x \otimes (y \otimes z)$; and \item for each object $x$, central isomorphisms $\lambda_x\colon x \otimes I \to x$ and $\rho_x\colon I \otimes x \to x$; \end{itemize} such that the following conditions hold. \begin{itemize}% \item all possible [[natural transformation|naturality squares]] for $\alpha$, $\lambda$, and $\rho$ (which make sense since we have central morphisms) commute. Note that when written out explicitly in terms of the functors $x\rtimes -$ and $-\ltimes x$, we need three different naturality squares for $\alpha$. (But it is possible to rephrase $\alpha$ as a single natural transformation using the slick version below.) \item the pentagon law holds for $\alpha$, as in a [[monoidal category]]. \item the triangle law holds for $\alpha$, $\lambda$, and $\rho$, as in a monoidal category. \end{itemize} A \textbf{strict premonoidal category} is a premonoidal category in which $(x \otimes y) \otimes z = x \otimes (y \otimes z)$, $x \otimes I = x$, and $I \otimes x = x$, and in which $\alpha_{x,y,z}$, $\lambda_x$, and $\rho_x$ are all [[identity morphisms]]. (We need the underlying category $C$ to be a [[strict category]] for this to make sense.) Similarly, a \textbf{symmetric premonoidal category} is a premonoidal category equipped with a central natural isomorphism $x\otimes y \cong y\otimes x$ (as for $\alpha$, there are two naturality squares unless we use the slick approach), satisfying the usual axioms of a symmetry. \hypertarget{slick_version}{}\subsection*{{Slick version}}\label{slick_version} As a [[strict monoidal category]] is a [[monoid]] in the [[cartesian monoidal category]] [[Cat]], so a strict premonoidal category is a monoid in the [[symmetric monoidal category]] $(Cat,\Box)$, where $\Box$ is the [[funny tensor product]]. From this point of view, a binoidal category is just a category $C$ with a functor $C \Box C \to C$ It may be possible to make $(Cat,\Box)$ a [[symmetric monoidal 2-category]], in which a [[pseudomonoid]] object is precisely a non-strict premonoidal category, but if so, nobody seems to have written this up yet. It is possible, however, to describe part of the structure of a non-strict premonoidal category in terms of $(Cat,\Box)$. For instance, a binoidal structure on $C$ is precisely a functor $C\Box C \to C$, and the naturality of the associator $\alpha$ can be expressed by saying that it is a natural transformation (with central components) between functors $C\Box C\Box C \to C$. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item Every [[monoidal category]] is a premonoidal category. \item If $T$ is a [[strong monad]] on a monoidal category $C$, then the [[Kleisli category]] $C_T$ of $T$ inherits a premonoidal structure, such that the functor $C\to C_T$ is a strict premonoidal functor. This premonoidal structure is only a monoidal structure if $T$ is a [[commutative monad]]. \item A strict premonoidal category is the same as a [[sesquicategory]] with one object, so any object of a sesquicategory has a corresponding premonoidal category whose objects are endomorphisms and arrows are 2-cells. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} The central morphisms of a premonoidal category $C$ form a [[subcategory]] $Z(C)$, called the \textbf{centre} of $C$, which is a [[monoidal category]]. This defines a [[right adjoint functor]] to the inclusion $MonCat \hookrightarrow PreMonCat$ using the definition of functor of premonoidal categories in \hyperlink{PR97}{Power-Robinson 97}. In the same way that a (strict) monoidal category can be identified with a (strict) [[2-category]] with one object, a strict premonoidal category can be identified with a [[sesquicategory]] with one object. In fact, a sesquicategory is precisely a category [[enriched category|enriched]] over the monoidal category $(Cat,\otimes)$ described above. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[John Power]] and [[Edmund Robinson]], \emph{Premonoidal categories and notions of computation}, Math. Structures Comput. Sci., 7(5):453--468, 1997. Logic, domains, and programming languages (Darmstadt, 1995). \href{http://www.eecs.qmul.ac.uk/~edmundr/pubs/mscs97/premoncat.ps}{PostScript} \item Alan Jeffrey, \emph{Premonoidal categories and a graphical view of programs,} \href{http://fpl.cs.depaul.edu/ajeffrey/papers/premonA.pdf}{pdf file} \end{itemize} [[!redirects premonoidal category]] [[!redirects premonoidal categories]] [[!redirects binoidal category]] [[!redirects binoidal categories]] \end{document}