\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{prequantum field theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{geometric_quantization}{}\paragraph*{{Geometric quantization}}\label{geometric_quantization} [[!include geometric quantization - contents]] \hypertarget{quantum_field_theory}{}\paragraph*{{Quantum field theory}}\label{quantum_field_theory} [[!include functorial quantum field theory - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{details}{Details}\dotfill \pageref*{details} \linebreak \noindent\hyperlink{TheTopos}{The ambient topos}\dotfill \pageref*{TheTopos} \linebreak \noindent\hyperlink{LocalPrequantumFieldTheory}{Local prequantum field theory}\dotfill \pageref*{LocalPrequantumFieldTheory} \linebreak \noindent\hyperlink{PrequantumFieldTheoryIdea}{Idea}\dotfill \pageref*{PrequantumFieldTheoryIdea} \linebreak \noindent\hyperlink{BulkFieldTheory}{Bulk field theory}\dotfill \pageref*{BulkFieldTheory} \linebreak \noindent\hyperlink{BoundaryFieldTheory}{Boundary field theory}\dotfill \pageref*{BoundaryFieldTheory} \linebreak \noindent\hyperlink{CornerFieldTheory}{Corner field theory}\dotfill \pageref*{CornerFieldTheory} \linebreak \noindent\hyperlink{classical_mechanics_as_prequantum_field_theory}{Classical mechanics as prequantum field theory}\dotfill \pageref*{classical_mechanics_as_prequantum_field_theory} \linebreak \noindent\hyperlink{HigherDijkgraafWittenLocalPrequantumFieldTheory}{Higher Dijkgraaf-Witten local prequantum field theory}\dotfill \pageref*{HigherDijkgraafWittenLocalPrequantumFieldTheory} \linebreak \noindent\hyperlink{1dDWTheory}{1d Dijkgraaf-Witten theory}\dotfill \pageref*{1dDWTheory} \linebreak \noindent\hyperlink{FiniteGaugeGroups}{Finite gauge groups}\dotfill \pageref*{FiniteGaugeGroups} \linebreak \noindent\hyperlink{GroupoidsAndBasicHomotopy1TypeTheory}{Essence of gauge theory: Groupoids and basic homotopy 1-type theory}\dotfill \pageref*{GroupoidsAndBasicHomotopy1TypeTheory} \linebreak \noindent\hyperlink{CorrespondencesOfGroupoids}{Trajectories of fields: Correspondences of groupoids}\dotfill \pageref*{CorrespondencesOfGroupoids} \linebreak \noindent\hyperlink{1dDWLocalFieldTheory}{Action functionals on spaces of trajectories: correspondences of groupoids over the space of phases}\dotfill \pageref*{1dDWLocalFieldTheory} \linebreak \noindent\hyperlink{2d_dijkgraafwitten_theory}{2d Dijkgraaf-Witten theory}\dotfill \pageref*{2d_dijkgraafwitten_theory} \linebreak \noindent\hyperlink{2groupoids_and_basic_homotopy_2type_theory}{2-Groupoids and basic homotopy 2-type theory}\dotfill \pageref*{2groupoids_and_basic_homotopy_2type_theory} \linebreak \noindent\hyperlink{3dDWLocalPrequantumFieldTheory}{$n$d Dijkgraaf-Witten theory}\dotfill \pageref*{3dDWLocalPrequantumFieldTheory} \linebreak \noindent\hyperlink{EssenceOfHigherGaugeTheoryBasicHomotopyTheory}{Essence of higher gauge theory: $\infty$-Groupoids and basic homotopy theory}\dotfill \pageref*{EssenceOfHigherGaugeTheoryBasicHomotopyTheory} \linebreak \noindent\hyperlink{HeuristicsOnCompositionAndInverses}{Higher gauge transformations: Simplicial sets and Kan complexes}\dotfill \pageref*{HeuristicsOnCompositionAndInverses} \linebreak \noindent\hyperlink{1GroupoidsAsKanComplexes}{1-Groupoids as Kan complexes}\dotfill \pageref*{1GroupoidsAsKanComplexes} \linebreak \noindent\hyperlink{HomotopyTheoryOfKanComplexes}{Homotopy theory of $\infty$-groupoids as Kan complexes}\dotfill \pageref*{HomotopyTheoryOfKanComplexes} \linebreak \noindent\hyperlink{DoldKanCorrespondenceInPrequantumFieldTheory}{Higher phases: Homological algebra and abelian $\infty$-groups}\dotfill \pageref*{DoldKanCorrespondenceInPrequantumFieldTheory} \linebreak \noindent\hyperlink{local_dw_action_functionals_higher_group_cohomology}{Local DW action functionals: Higher group cohomology}\dotfill \pageref*{local_dw_action_functionals_higher_group_cohomology} \linebreak \noindent\hyperlink{HigherChern-SimonsLocalPrequantumFieldTheoryLevels}{Higher Chern-Simons local prequantum field theory -- Levels}\dotfill \pageref*{HigherChern-SimonsLocalPrequantumFieldTheoryLevels} \linebreak \noindent\hyperlink{HigherChern-SimonsLocalPrequantumFieldTheory}{Higher Chern-Simons local prequantum field theory}\dotfill \pageref*{HigherChern-SimonsLocalPrequantumFieldTheory} \linebreak \noindent\hyperlink{TopologicalYangMillsLocalPrequantumFieldTheory}{$d = n + 1$, Universal topological Yang-Mills theory $S_{tYM}$}\dotfill \pageref*{TopologicalYangMillsLocalPrequantumFieldTheory} \linebreak \noindent\hyperlink{smooth_moduli_stacks_of_fields_smooth_groupoids}{Smooth moduli stacks of fields: Smooth $\infty$-groupoids}\dotfill \pageref*{smooth_moduli_stacks_of_fields_smooth_groupoids} \linebreak \noindent\hyperlink{the_canonical_local_action_functional_differential_forms_in_de_rham_hypercohomology}{The canonical local action functional: Differential forms in de Rham hypercohomology}\dotfill \pageref*{the_canonical_local_action_functional_differential_forms_in_de_rham_hypercohomology} \linebreak \noindent\hyperlink{HigherChernSimonsPrequantumFieldTheory}{$d = n + 0$, Higher Chern-Simons field theories}\dotfill \pageref*{HigherChernSimonsPrequantumFieldTheory} \linebreak \noindent\hyperlink{UniversalStYMBoundaryAndDifferentialCohomology}{Universal boundary condition for $S_{tYM}$: Differential cohomology and Cheeger-Simons field theory}\dotfill \pageref*{UniversalStYMBoundaryAndDifferentialCohomology} \linebreak \noindent\hyperlink{GenralBoundaryForStYMAndHigherChernSimons}{General boundary condition for $S_{tYM}$: Higher Chern-Weil theory and $\infty$-Chern-Simons theory}\dotfill \pageref*{GenralBoundaryForStYMAndHigherChernSimons} \linebreak \noindent\hyperlink{geometric_defects_for__from_chernsimons_invariants_higher_holonomy_parallel_transport_fiber_integration_in_differential_cohomology}{Geometric defects for $S_{tYM}$ from Chern-Simons invariants: Higher holonomy, parallel transport, fiber integration in differential cohomology}\dotfill \pageref*{geometric_defects_for__from_chernsimons_invariants_higher_holonomy_parallel_transport_fiber_integration_in_differential_cohomology} \linebreak \noindent\hyperlink{_topological_chernsimons_boundaries}{$d = n-1$, Topological Chern-Simons boundaries}\dotfill \pageref*{_topological_chernsimons_boundaries} \linebreak \noindent\hyperlink{_wesszuminowitten_field_theories}{$d = n-1$, Wess-Zumino-Witten field theories}\dotfill \pageref*{_wesszuminowitten_field_theories} \linebreak \noindent\hyperlink{_wilson_loopwilson_surface_field_theories}{$d = n-2$, Wilson loop/Wilson surface field theories}\dotfill \pageref*{_wilson_loopwilson_surface_field_theories} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of \emph{[[quantum field theory]]} exists without reference to any predefined notion of \emph{[[configuration space]]} of \emph{[[quantum fields]]}, \emph{[[action functional]]}, \emph{[[phase space]]} etc.: A [[quantum field theory]] in [[FQFT]]-[[axiomatization]] is simply a consistent assignment of [[spaces of quantum states]], whereas in [[AQFT]]-[[axiomatization]] it is a consistent assignment of [[algebras of quantum observables]], and that's it. However, most (or maybe all?) quantum field theories of interest in actual [[physics]] (as opposed to as devices of pure [[mathematics]]) are not random models of these axioms, but do arise under a process called [[quantization]] from a ([[local Lagrangian|local]]/[[extended Lagrangian|extended]]) [[Lagrangian]], hence from an [[action functional]], defined on a [[configuration space]] of [[quantum fields]], or else arise as [[holographic duals]] of quantum field theories that arise by quantization. Moreover, the extra information provided by the Lagrangian is commonly used (and is maybe strictly necessary) to interpret the mathematical structure of the axiomatic QFT in actual [[physics]] (though notably in [[AQFT]] there are results that re-extract at least parts of this data from the axiomatic QFT, for instance the [[Doplicher-Roberts reconstruction theorem]] which extract the [[global gauge group]] from the [[local net of quantum observables]]). There are in turn two formalizations of the notion of [[quantization]]: \emph{algebraic [[deformation quantization]]} and \emph{[[geometric quantization]]}. In the latter one speaks of \emph{[[prequantization]]} when referring to a precursor step to the actual quantization step, in which the [[symplectic form]] on [[phase space]] is lifted to [[differential cohomology]], hence to a [[prequantum bundle]]. But in the context of [[higher geometry]] and [[higher geometric quantization]] this prequantization step is already part of the data of the [[Lagrangian]] itself: an [[extended Lagrangian]] already encodes not just the [[action functional]] but also the [[prequantum bundle]] and all the [[prequantum n-bundle|prequantum (n-k)-bundles]] in each [[dimension]] $k$. The action functional itself is the \emph{[[prequantum 0-bundle]]} in this context. Therefore, in the refined picture of [[higher geometry]]/[[extended quantum field theory]] it makes good sense to refer in a unified way to \textbf{prequantum field theory} for all of the data related to [[Lagrangians]] that is not yet the final [[quantum field theory]]. In particular, an \textbf{extended prequantum field theory} of [[dimension]] $n$ is a rule that assigns \begin{itemize}% \item to every (suitably [[orientation|oriented]]) [[closed manifold]] of [[dimension]] $k$ a [[prequantum n-bundle|prequantum (n-k)-bundle]] \item to every (suitably [[orientation|oriented]]) [[compact topological space|compact]] [[manifold with boundary]] $\Sigma_k$ a [[section]] of the prequantum $(n-k+1)$-bundle assigned to the [[boundary]] $\partial \Sigma_k$ and pulled back to the space of fields over $\Sigma_k$ \end{itemize} such that this data is related suitably under [[transgression]]. The actual [[extended quantum field theory]] would be obtained from such a data by passing from the assignment of a given prequantum $(n-k)$-bundle to that of the [[n-vector space|(n-k)-vector space]] of [[polarization|polarized]] [[sections]] of a suitable [[associated infinity-bundle|associated]] [[fiber infinity-bundle|fiber bundle]]. This is summarized in the following table: [[!include extended prequantum field theory - table]] \hypertarget{details}{}\subsection*{{Details}}\label{details} \begin{quote}% under construction \end{quote} We discuss local (``[[extended TQFT|extended]]'') [[topological field theory|topological]] prequantum field theory. The following originates in the lecture notes (\hyperlink{SchreiberPittLectures}{Schreiber Pittsburgh13}) and draws on material that is discussed more fully in (\hyperlink{FiorenzaValentino}{Fiorenza-Valentino}) and (\hyperlink{hCSlpQFT}{hCSlpQFT}). After a technical preliminary to set the stage in \begin{itemize}% \item \emph{\hyperlink{TheTopos}{The ambient topos}}, \end{itemize} the first section gives the the definitions and general properties of \begin{itemize}% \item \emph{\hyperlink{LocalPrequantumFieldTheory}{Local prequantum field theory}}. \end{itemize} To digest this the reader may first or in parallel want to look at the simplest examples of these general considerations, which we discuss below in the first subsections of \begin{itemize}% \item \emph{\hyperlink{HigherDijkgraafWittenLocalPrequantumFieldTheory}{Higher Dijkgraaf-Witten prequantum field theory}}. \end{itemize} After that we turn to the general case of examples of \begin{itemize}% \item \emph{\hyperlink{HigherChern-SimonsLocalPrequantumFieldTheory}{Higher Chern-Simons prequantum field theory}}. \end{itemize} Here the pattern of the discussion of examples is the following: \newline \hypertarget{TheTopos}{}\subsubsection*{{The ambient topos}}\label{TheTopos} Prequantum field theory deals with ``spaces of [[field (physics)|physical fields]]''. These spaces of [[field (physics)|fields]] are, in general, richer than just plain [[sets]] in two ways \begin{enumerate}% \item Spaces of [[field (physics)|fields]] carry [[geometry|geometric]] structure, notably they may be [[smooth spaces]], meaning that there is a way to determine which collections of [[field (physics)|fields]] form a smoothly parameterized collection. This is for instance the structure invoked (often implicitly) when performing [[variational calculus]] on spaces of [[field (physics)|fields]] in order to find their classical [[equations of motion]]. \item Spaces of fields have [[gauge transformations]] between their points and possibly [[higher gauge transformations]] between these, meaning that they are in fact [[groupoids]] and possibly [[infinity-groupoid|higher groupoids]]. In the physics literature this is best known in the [[infinitesimal object|infinitesimal]] approximation to these gauge transformations, in which case the spaces of fields are described by [[BRST complexes]]: the dg-algebras of functions on a [[Lie algebroid]] or [[L-∞ algebroid]] of fields. \end{enumerate} Taken together this means that spaces of fields are \emph{[[(∞,1)-sheaf|geometric higher groupoids]]}, such as [[orbifolds]] and more generally [[Lie groupoids]], [[differentiable stacks]], [[Lie 2-groupoids]], \ldots{} [[smooth ∞-groupoids]]. A collection of all such geometric higher groupoids for a chosen flavor of [[geometry]] -- for instance [[topology]] or [[differential geometry]] or [[supergeometry]] (for the description of [[fermion]] fields) or [[synthetic differential geometry]] or [[synthetic differential supergeometry]], etc. -- is called an \emph{[[∞-topos]]}. Not quite every [[∞-topos]] $\mathbf{H}$ serves as a decent context for collections (moduli stacks) of [[physical fields]] though. In the following we need at least that $\mathbf{H}$ has a reasonable notion of \emph{[[discrete objects]]} so that we can identify the geometrically discrete spaces in there. We here need this to mean the following \begin{defn} \label{ShapeAndFlatModality}\hypertarget{ShapeAndFlatModality}{} An [[∞-topos]] $\mathbf{H}$ is called \emph{[[locally ∞-connected (∞,1)-topos|locally ∞-connected]]} and \emph{[[globally ∞-connected (∞,1)-topos|globally ∞-connetced]]} if the [[locally constant ∞-stack]]-functor $LConst \colon$ [[∞Grpd]] $\to \mathbf{H}$ is a [[reflective sub-(∞,1)-category|reflective embedding]]. The corresponding reflector we write \begin{displaymath} \Pi \colon \mathbf{H} \to \infty Grpd \hookrightarrow \mathbf{H} \end{displaymath} and also call the \emph{[[shape modality]]} of $\mathbf{H}$. By the discussion at [[adjoint triple]] it follows that $LConst$ is also a [[coreflective subcategory|coreflective]] embedding; the corresponding coreflector we write \begin{displaymath} \flat \colon \mathbf{H} \stackrel{\Gamma}{\to} \infty Grpd \hookrightarrow \mathbf{H} \end{displaymath} and call the \emph{[[flat modality]]}. \end{defn} \begin{example} \label{}\hypertarget{}{} Every [[cohesive (∞,1)-topos]] is in particular globally and locally $\infty$-connected, by definition. Standard canonical examples to keep in mind are \begin{itemize}% \item $\mathbf{H} =$ [[∞Grpd]] for [[∞-Dijkgraaf-Witten theories]]; \item $\mathbf{H} =$ [[Smooth∞Grpd]] for [[schreiber:∞-Chern-Simons theories]]; \item $\mathbf{H} =$ [[SuperSmooth∞Grpd]] for [[schreiber:∞-Chern-Simons theories]] with [[fermions]] and [[supersymmetry]]; \item $\mathbf{H} =$ [[SynthDiff∞Grpd]] for [[AKSZ sigma-models]]. \end{itemize} \end{example} \hypertarget{LocalPrequantumFieldTheory}{}\subsubsection*{{Local prequantum field theory}}\label{LocalPrequantumFieldTheory} After sketching out the general \begin{itemize}% \item \emph{\hyperlink{PrequantumFieldTheoryIdea}{Idea}} \end{itemize} we formulate first \begin{itemize}% \item \emph{\hyperlink{BulkFieldTheory}{Bulk field theory}}, \end{itemize} which concerns the case where the [[worldvolume]]/[[spacetime]] on which the [[field (physics)|physical fields]] propagate has no [[boundaries]] with [[boundary conditions]] imposed (no ``[[branes]]'' or ``[[domain walls]]'' or ``[[QFT with defects|defects]]''). The point of this section is to see how the ``space of fields'' -- or rather: the [[moduli stack]] of fields -- on a point induces the corresponding spaces/moduli stacks of fields on an arbitrary [[closed manifold]], and, correspondingly, how the [[prequantum n-bundle]] on the space over fields over the point induces the [[action functional]] in [[codimension]] 0. However, what makes local prequantum field theory rich is that it naturally incorporates extra structure on [[boundaries]] of [[worldvolume]]/[[spacetime]]. In fact, under suitable conditions there is another local prequantum field theory just over the boundary, which is related to the corresponding bulk field theory possibly by a kind of [[holographic principle]]. This general mechanism we discuss in \begin{itemize}% \item \emph{\hyperlink{BoundaryFieldTheory}{Boundary field theory}}. \end{itemize} But plain boundaries are just the first example of a general phenomenon known as ``[[QFT with defects|defects]]'' or ``phase dualities'' or ``singularities'' in field theories. Notably the boundary field theory itself may have boundaries, in which case this means that the original theory had \emph{[[manifold with corners|corners]]} where different boundary pieces meet. This we discuss in \begin{itemize}% \item \emph{\hyperlink{CornerFieldTheory}{Corner field theory}}. \end{itemize} Generally there are fields theories with general such singularties: [[!include field theory with boundaries and defects - table]] \hypertarget{PrequantumFieldTheoryIdea}{}\paragraph*{{Idea}}\label{PrequantumFieldTheoryIdea} A \emph{prequantum field theory} is, at its heart, an assignment that sends a piece of [[worldvolume]]/[[spacetime]] $\Sigma$ -- technically a [[cobordism]] with [[boundary]] and [[corners]] -- to the \begin{enumerate}% \item [[space]] of [[physical field|field configurations]] over incoming and outgoing pieces of worldvolume/spacetime; \item the space of field configurations over the bulk worldvolume/spacetime -- the [[trajectories]] of fields; \item an [[action functional]] that assigns to all these field configurations [[phases]] in a compatible manner. \end{enumerate} These field configurations and spaces of [[trajectories]] between them are represented by [[spans]]/[[correspondences]] of ([[moduli space|moduli]]-)spaces of fields ([[moduli stacks]], really), hence [[diagrams]] of the form \begin{displaymath} \mathbf{Fields}_{in} \leftarrow \mathbf{Fields} \rightarrow \mathbf{Fields}_{out} \,. \end{displaymath} Here $\mathbf{Fields}_{in}$ is to be thought of as the space of incoming fields, $\mathbf{Fields}_{out}$ that of outgoing fields, and $\mathbf{Fields}$ the space of all fields on some [[cobordism]] connecting the incoming and the outgoing pieces of [[worldvolume]]/[[spacetime]]. The left map sends such a trajectory to its starting configuration, and the right one sends it to its end configuration. Given two such spans/correspondences, that share a common field configuration as in \begin{displaymath} \itexarray{ && \mathbf{Fields}_1 && && \mathbf{Fields}_2 \\ & \swarrow && \searrow && \swarrow && \searrow \\ \mathbf{Fields}_{in_1} && && \mathbf{Fields}_{out_1} = \mathbf{Fields}_{in_2} && && \mathbf{Fields}_{out_2} } \end{displaymath} can be [[composition|composed]], by forming consecutive trajectories from all pairs of trajectories that match in the middle. The space of these composed trajectories is the [[fiber product]] $\mathbf{Fields}_1 \underset{{\mathbf{Fields}_{out_1}} \atop {=\mathbf{Fields}_{in_2}}}{\times} \mathbf{Fields}_2$ which sits in a new [[span]]/[[correspondence]] \begin{displaymath} \mathbf{Fields}_{in_1} \leftarrow \mathbf{Fields}_1 \underset{{\mathbf{Fields}_{out_1}} \atop {=\mathbf{Fields}_{in_2}}}{\times} \mathbf{Fields}_2 \rightarrow \mathbf{Fields}_{out_2} \end{displaymath} exhibiting the composite of the previous two. This way, spaces of fields with spans/correspondences between them form a [[category]], which we denote $Span_1(\mathbf{H})$ if $\mathbf{H}$ denotes the ambient context (a [[topos]]) in which the spaces of fields live. If two cobordisms run in parallel, then the field configurations on their union are pairs of the original field configurations, which are elements in the [[cartesian product]] of spaces of fields. Hence the operations \begin{displaymath} \left( \mathbf{Fields}_{in} \leftarrow \mathbf{Fields} \rightarrow \mathbf{Fields}_{out} \right) \otimes \left( \tilde \mathbf{Fields}_{in} \leftarrow \tilde \mathbf{Fields} \rightarrow \tilde\mathbf{Fields}_{out} \right) \;\;\coloneqq\;\; \left( \mathbf{Fields}_{in} \times \tilde\mathbf{Fields}_{in} \leftarrow \mathbf{Fields} \times \tilde\mathbf{Fields} \to \mathbf{Fields}_{out} \times \tilde\mathbf{Fields}_{out} \right) \end{displaymath} make this category of fields and correspondence into a [[monoidal category]]. Then a choice of field configurations for a (not yet localized) field theory in dimension $n \in \mathbb{N}$ is a [[monoidal functor]] from a [[category of cobordisms]] of dimension $n$ to such a category of [[spans]]/[[correspondences]] \begin{displaymath} \mathbf{Fields} \colon Bord_n^\otimes \to Span_1(\mathbf{H})^\otimes \,, \end{displaymath} namely a consistent assignment that to each [[closed manifold]] $\Sigma_{n-1}$ of dimension $(n-1)$ assigns a space of field configurations $\mathbf{Fields}(\Sigma_{n-1})$ and that to each [[cobordism]] \begin{displaymath} \Sigma_{in} \to \Sigma \leftarrow \Sigma_{out} \end{displaymath} assigns a [[span]]/[[correspondence]] of spaces of field configurations and trajectories \begin{displaymath} \mathbf{Fields}(\Sigma_{in}) \leftarrow \mathbf{Fields}(\Sigma) \rightarrow \mathbf{Fields}_{\Sigma_{out}} \,. \end{displaymath} Apart from the field configurations themselves, prequantum field theory assigns to each [[trajectory]] a ``[[phase]]'' -- an element in the [[circle group]] $U(1)$ -- by a map called the (exponentiated) [[action functional]]. In order to nicely relate that to the expression of spaces of trajectories as [[spans]]/[[correspondences]] as above, it is useful to think of the [[circle group]] here as being the [[automorphisms]] of something. This is universally accomplished by taking it to be the automorphisms of the unique point in the [[delooping]] [[groupoid]] $\mathbf{B}U(1) = \{\ast \stackrel{c \in U(1)}{\to} \ast\}$. (A lightning review of [[groupoid]]-[[homotopy theory]] is below in \hyperlink{GroupoidsAndBasicHomotopy1TypeTheory}{Groupoids and basic homotopy 1-type theory}.) In other words, we think of the group of phases $U(1)$ as the space of [[homotopies]] from the point to itself in the [[Eilenberg-MacLane space]] $\mathbf{B}U(1)$, expressed by the [[diagram]] (a [[homotopy fiber product]] diagram) \begin{displaymath} \itexarray{ && U(1) \\ & \swarrow && \searrow \\ \ast && \swArrow && \ast \\ & \searrow && \swarrow \\ && \mathbf{B}U(1) } \,. \end{displaymath} Using this, if we assume for simplicity that the in- and outgoing field configurations are sent constantly to the point in $\mathbf{B}U(1)$, then an (exponentiated) [[action functional]] on the space of trajectories $\exp(i S) \colon \mathbf{Fields} \to U(1)$ is equivalently a [[homotopy]] as shown on the left of the following diagram \begin{displaymath} \itexarray{ && \mathbf{Fields} \\ & \swarrow && \searrow \\ \mathbf{Fields}_{in} && \swArrow && \mathbf{Fields}_{out} \\ & {}_{\mathllap{0}}\searrow && \swarrow_{\mathrlap{0}} \\ && \mathbf{B}U(1) } \;\;\;\; \simeq \;\;\;\; \itexarray{ && \mathbf{Fields} \\ && \downarrow^{\mathrlap{\exp(i S)}} \\ && U(1) \\ & \swarrow && \searrow \\ \ast && \swArrow && \ast \\ & \searrow && \swarrow \\ && \mathbf{B}U(1) } \,. \end{displaymath} Hence action functionals are naturally incorporated into [[spans]]/[[correspondences]] of [[moduli spaces]] of fields simply by regarding these to be formed not in the ambient [[topos]] $\mathbf{H}$ itself, but in its [[slice topos]] $\mathbf{H}_{/\mathbf{B}U(1)}$, where each object is equipped with a map to $\mathbf{B}U(1)$ and each morphism with a [[homotopy]] in $\mathbf{B}U(1)$ between the corresponding maps. We write $\mathrm{Span}_1(\mathbf{H}, \mathbf{B}U(1))$ for the category of spans/correspondences as before, but now equipped with maps to, and transformations over, $\mathbf{B}U(1)$ as in the above diagram. Then an [[action functional]] for a choice of field configurations that itself is given as a [[monoidal functor]] $\mathbf{Fields} \colon Bord_n^\otimes \to Span_1(\mathbf{H})$ as above is a monoidal functor \begin{displaymath} S \colon Bord_n^\otimes \to Span_1(\mathbf{H}, \mathbf{B}U(1)) \end{displaymath} such that the spans of spaces of fields are those specified before, hence such that it fits as a lift into the diagram \begin{displaymath} \itexarray{ && Span_1(\mathbf{H}, \mathbf{B}U(1)) \\ & {}^{\mathllap{S}}\nearrow & \downarrow \\ Bord_n &\underset{\mathbf{Fields}}{\to}& Span_1(\mathbf{H}) } \,, \end{displaymath} where the right vertical functor [[forgetful functor|forgets]] the phase assignments and just remembers the correspondences of field trajectories. So far this is a non-local (or: not-necessarily local) prequantum field theory, since it assigns data only to entire $n$-dimensional cobordisms and $(n-1)$-dimensional [[closed manifolds]], but is not guaranteed to be obtained by integrating up local data over little pieces of these manifolds. The latter possibility is however the characteristic property of [[local quantum field theory]], which in turn is the flavor of quantum field theory that seems to matter in nature, and fundamentally. In order to formalize this localization, we allow the cobordisms to contain higher-[[codimension]] pieces that are [[manifolds with corners]]. These then form not just a [[category of cobordisms]], but an [[(∞,n)-category]] of cobordisms, which we will still denote $Bord_n^\otimes$. If we now have a cobordism with [[codimension]]-2 [[corners]], then the field configurations over it now form a span-of-spans \begin{displaymath} \itexarray{ \mathbf{Fields}_{ii} &\leftarrow& \mathbf{Fields}_{ic} &\to& \mathbf{Fields}_{io} \\ \uparrow && \uparrow && \uparrow \\ \mathbf{Fields}_{ci} &\leftarrow& \mathbf{Fields}_{cc} &\to& \mathbf{Fields}_{co} \\ \downarrow && \downarrow && \downarrow \\ \mathbf{Fields}_{oi} &\leftarrow& \mathbf{Fields}_{oc} &\to& \mathbf{Fields}_{oo} } \,. \end{displaymath} Generally, for $n$-dimensional cobordism that are ``localized'' all the way to [[corners]] in codimension $n$, their field configurations and trajectories-of-trajectories etc. form $n$-dimensional cubes of spans-of-spans this way. We write $Span_n(\mathbf{H})$ for the resulting [[(∞,n)-category of spans]]. In order to still have an [[action functional]] on trajectories is [[codimension]]-0 associated with this in the above fashion, we need to [[delooping|deloop]] $U(1)$ $n$-times to the [[n-groupoid]] $\mathbf{B}^n U(1)$ (the [[circle n-group|circle (n+1)-group]]). Accordingly a local prequantum field theory in dimension $n$ is given by a [[monoidal (∞,n)-functor]] \begin{displaymath} S \colon Bord_n^\otimes \to Span_n(\mathbf{H}, \mathbf{B}^n U(1)) \,. \end{displaymath} The point of local topological (prequantum) field theory is that by the [[cobordism theorem]] the above story reverses: the assignment of fields and their action functional in higher dimension is necessarily given by [[higher traces]] of the data assigned in lower dimension. Hence the whole assignment $S$ above is fixed by its value on the point, hence by a choice of one single map \begin{displaymath} \left[ \itexarray{ \mathbf{Fields}(\ast) \\ \downarrow^\mathrlap{S} \\ \mathbf{B}U(1) } \right] \,, \end{displaymath} the fully localized action functional. Or rather, this is the case for pure bulk field theory, with no [[branes]] or [[domain walls]]. If these are present, then each type of them in dimension $k$ is specified by a [[k-morphism]] in $Span_n(\mathbf{H}, \mathbf{B}^n U(1))$. All this we now describe more formally. \hypertarget{BulkFieldTheory}{}\paragraph*{{Bulk field theory}}\label{BulkFieldTheory} We now first consider the formalization of prequantum field theory in the absence of any data such as [[boundary conditions]], [[domain walls]], [[branes]], [[QFT with defects|defects]], etc. This describes either field theories in which no such phenomena are taken to be present, or else it describes that part of those field theories where such phenomena are present in principle, but restricted to the ``[[bulk]]'' of [[worldvolume]]/[[spacetime]] where they are not. Therefore it makes sense to speak of \emph{bulk field theory} in this case. \begin{defn} \label{nCategoryOfCobordisms}\hypertarget{nCategoryOfCobordisms}{} For $n \in \mathbb{N}$, write \begin{displaymath} Bord_n^\otimes \in E_\infty Alg(Cat_{(\infty,n)}) \end{displaymath} for the [[symmetric monoidal (∞,n)-category]] [[(∞,n)-category of cobordisms|of cobordisms]] with $n$-dimensional [[framed manifold|framing]]. For $S \to O(n)$ a homomorphism of [[∞-groups]] (may be modeled by a homomorphism of [[topological groups]]) to the [[general linear group]] (or homotopy-equivalently its [[maximal compact subgroup]], the [[orthogonal group]]), we write \begin{displaymath} (Bord_n^S)^\otimes \in E_\infty Alg(Cat_{(\infty,n)}) \end{displaymath} for the corresponding symmetric monoidal $(\infty,n)$-category of cobordisms equipped with [[G-structure|S-structure]] on their $n$-stabilized [[tangent bundle]]. \end{defn} \begin{remark} \label{}\hypertarget{}{} In this notation we have an identification \begin{displaymath} Bord_n \simeq Bord_n^{S \coloneqq \ast} \end{displaymath} because a [[framing]] of the $n$-stabilized tangent bundle is a trivialization of that bundle and hence equivalently a [[G-structure]] for $G$ the trivial group. In (\hyperlink{LurieTFT}{LurieTFT}) this is denoted by ``$Bord_n^{fr}$''. \end{remark} \begin{remark} \label{}\hypertarget{}{} The [[cobordism theorem]] asserts, essentially, that $Bord_n$ is the [[symmetric monoidal (∞,n)-category]] with [[fully dualizable objects|full duals]] which is [[free construction|free]] on a single generator, the point. In itself this is a deep statement about the [[homotopy type]] of [[categories of cobordisms]]. But for the following discussion the reader may just take this as the \emph{definition} of $Bord_n$. This then makes $Bord_n$ a very simple object, as long as we are just mapping out of it, which we do. What this means then is that a [[monoidal (∞,n)-functor]] \begin{displaymath} Z \colon Bord_n^\otimes \to \mathcal{C}^\otimes \end{displaymath} sends the point to some [[fully dualizable object]] $Z(\ast) \in \mathcal{C}$ and sends \begin{itemize}% \item the [[circle]] $S^1$ to the [[trace]] of the identity on $Z(\ast)$, \item the [[sphere]] $S^2$ to the 2-dimensional [[higher trace]] of the identity, \end{itemize} and so on. \end{remark} \begin{defn} \label{CorrespondencesInInfinityTopos}\hypertarget{CorrespondencesInInfinityTopos}{} For $\mathbf{H}$ an [[∞-topos]], and $n \in \mathbb{N}$, write \begin{displaymath} Span_n(\mathbf{H}) \in Cat_{(\infty,n)} \end{displaymath} for the [[(∞,n)-category of spans]] in $\mathbf{H}$. From the [[cartesian monoidal category]] structure of $\mathbf{H}$ this inherits the structure of a [[symmetric monoidal (∞,n)-category]] which we write \begin{displaymath} Span_n(\mathbf{H})^\otimes \in E_\infty Alg(Cat_{(\infty,n)}) \,. \end{displaymath} \end{defn} \begin{prop} \label{FullSelfDualizabilityInSpan}\hypertarget{FullSelfDualizabilityInSpan}{} Every object in $Span_n(\mathbf{H})$ is a self-[[fully dualizable object]]. The [[evaluation map]]/[[coevaluation map]] $k$-spans in dimension $k$ involve in top degree the spans \begin{displaymath} \ast \leftarrow X \stackrel{}{\to} [\Pi(S^k), X] \,. \end{displaymath} (\ldots{}) \end{prop} \begin{defn} \label{CorrespondencesOverB}\hypertarget{CorrespondencesOverB}{} For $B \in Grp(\mathbf{H})$ an [[abelian ∞-group]] object in $\mathbf{H}$, spans in the [[slice (∞,1)-topos]] $\mathbf{H}_{/B}$ inherits a monoidal structure given on objects by \begin{displaymath} \otimes \; \colon \; \left[ \itexarray{ X \\ \downarrow^{\mathrlap{f}} \\ B } \right] \times \left[ \itexarray{ Y \\ \downarrow^{\mathrlap{g}} \\ B } \right] \mapsto \left[ \itexarray{ X \times Y \\ \downarrow^{\mathrlap{f \circ p_1 + g \circ p_2}} \\ B } \;\;\;\;\;\;\;\;\;\; \right] \,. \end{displaymath} We write \begin{displaymath} Span_n(\mathbf{H}, B)^\otimes \in E_\infty Alg(Cat_{(\infty,n)}) \end{displaymath} for the resulting [[symmetric monoidal (∞,n)-category]]. \end{defn} \begin{remark} \label{}\hypertarget{}{} In the case that $\mathbf{H} =$ [[∞Grpd]] this is a special case of (\hyperlink{LurieTFT}{LurieTFT, around prop. 3.2.8}), with the [[abelian ∞-group]] $B$ regarded as a special case of a [[symmetric monoidal (∞,1)-category]]. \end{remark} \begin{remark} \label{}\hypertarget{}{} Since the [[slice (∞,1)-category]] $\mathbf{H}_{/\flat \mathbf{B}^n U(1)}$ is itself an [[(∞,1)-topos]] -- the [[slice (∞,1)-topos]] -- we also have $Span_n(\mathbf{H}_{/\flat \mathbf{B}^n U(1)})$, according to def. \ref{CorrespondencesInInfinityTopos}. As an [[(∞,n)-category]] this is equivalent to $Span_n(\mathbf{H}, \flat \mathbf{B}^n U(1))$ from def. \ref{CorrespondencesOverB}, but the [[monoidal (∞,n)-category|monoidal structure]] is different. The [[cartesian product]] in the slice is given by [[homotopy fiber product]] in $\mathbf{H}$ over $\flat \mathbf{B}^n U(1)$, not by the addition in the [[∞-group]] structure on $\flat \mathbf{B}^n U(1)$, as in def. \ref{CorrespondencesOverB}. \end{remark} The central definition in the present context now is the following. \begin{defn} \label{LocalPrequantumFieldWithAction}\hypertarget{LocalPrequantumFieldWithAction}{} A \textbf{local prequantum bulk [[field (physics)|field]]} in [[dimension]] $n \in \mathbb{N}$ (in a given ambient [[cohesive (∞,1)-topos]] $\mathbf{H}$) is a [[monoidal (∞,n)-functor]] \begin{displaymath} \mathbf{Fields} \;\colon\; Bord^S_n \to Span_n(\mathbf{H}) \end{displaymath} from the [[(∞,n)-category of cobordisms]] (with [[G-structure|S-structure]]), def. \ref{nCategoryOfCobordisms}, to the [[(∞,n)-category of n-fold correspondences]] in $\mathbf{H}$. A \textbf{local action functional} on such a local prequantum bulk [[field (physics)|field]] is a monoidal lift $S$ of this in \begin{displaymath} \itexarray{ && Span_n(\mathbf{H}, \flat \mathbf{B}^n U(1)) \\ & {}^{\mathllap{S}}\nearrow & \downarrow^{\mathrlap{Span_n\left(\underset{\flat \mathbf{B}^n U(1)}{\sum}\right)}} \\ Bord_n^S &\underset{\mathbf{Fields}}{\to}& Span_n(\mathbf{H}) } \,. \end{displaymath} \end{defn} For $\mathbf{H} =$ [[∞Grpd]] this is the perspective in (\hyperlink{FHLT}{FHLT, section 3}). \begin{remark} \label{}\hypertarget{}{} Since a monoidal $(\infty,n)$-functor $\mathbf{Fields} \colon Bord_n \to Span_n(\mathbf{H})$ is determined by its value on the point, we will often notationally identify it with this value and write \begin{displaymath} \mathbf{Fields} = \mathbf{Fields}(\ast) \in \mathbf{H} \hookrightarrow Span_n(\mathbf{H}) \,. \end{displaymath} \end{remark} As a corollary of prop. \ref{FullSelfDualizabilityInSpan} we have: \begin{prop} \label{ValueOfLocalPrequantumFieldTheoryOnCobordism}\hypertarget{ValueOfLocalPrequantumFieldTheoryOnCobordism}{} Given $\mathbf{Fields} \colon Bord_n^\otimes \to Span_n(\mathbf{H})^\otimes$, it assigns to a [[k-morphism]] represented by a [[closed manifold]] $\Sigma_k$ the [[internal hom]] ([[mapping stack]]) from $\Pi(\Sigma_k)$ (the [[shape modality]] of $\Sigma_k$, def. \ref{ShapeAndFlatModality}) into the moduli stack of fields \begin{displaymath} \mathbf{Fields} \colon \Sigma_k \mapsto [\Pi(\Sigma_k), \mathbf{Fields}] \,. \end{displaymath} \end{prop} \begin{remark} \label{}\hypertarget{}{} By the defining property of the [[mapping stack]] construction, this means that if $\mathcal{C}$ is an [[(∞,1)-site]] of definition of the [[(∞,1)-topos]] $\mathbf{H}$, then $[\Pi(\Sigma_k), \mathbf{Fields}]$ is the [[∞-stack]] which to $U \in \mathcal{C}$ assigns the [[(∞,1)-categorical hom space]] \begin{displaymath} [\Pi(\Sigma_k), \mathbf{Fields}](U) \simeq \mathbf{H}(\Pi(\Sigma_k)\times U , \mathbf{Fields}) \,, \end{displaymath} hence the [[∞-groupoid]] of fields on $\Pi(\Sigma_k) \times U$. If $\mathbf{Fields}$ is a [[moduli ∞-stack]] of [[gauge fields]] for some [[smooth ∞-group]] $G$, hence of the form $\mathbf{B}G_{conn}$, then this an $\infty$-groupoid of a kind of smoothly (or else geometrically) $U$-parameterized collections of [[flat ∞-connections]] on $\Sigma_k$. \end{remark} (\ldots{}) \hypertarget{BoundaryFieldTheory}{}\paragraph*{{Boundary field theory}}\label{BoundaryFieldTheory} (\ldots{}) \hypertarget{CornerFieldTheory}{}\paragraph*{{Corner field theory}}\label{CornerFieldTheory} (\ldots{}) \hypertarget{classical_mechanics_as_prequantum_field_theory}{}\subsubsection*{{Classical mechanics as prequantum field theory}}\label{classical_mechanics_as_prequantum_field_theory} Traditional [[classical mechanics]] ([[Hamiltonian mechanics]], [[Lagrangian mechanics]], [[Hamilton-Jacobi theory]]) is naturally understood as a special case of -- and in fact as deriving from -- local prequantum field theory over $\mathbf{B}U(1)_{conn}$. This is discussed in some detail at \begin{itemize}% \item \emph{[[prequantized Lagrangian correspondence]]}. \end{itemize} \hypertarget{HigherDijkgraafWittenLocalPrequantumFieldTheory}{}\subsubsection*{{Higher Dijkgraaf-Witten local prequantum field theory}}\label{HigherDijkgraafWittenLocalPrequantumFieldTheory} We discuss here aspects of higher [[Dijkgraaf-Witten theory]]-type prequantum field theories, which are those prequantum field theories whose moduli stack $\mathbf{Fields}$ is a [[discrete ∞-groupoid]] (and usually also required to be finite, especially if its [[quantization]] is considered). This is a special case of the higher Chern-Simons theories discussed below in \emph{\hyperlink{HigherChern-SimonsLocalPrequantumFieldTheory}{Higher Chern-Simons local prequantum field theory}}, and hence strictly speaking need not be discussed separately. We use it here as a means to review some of the relevant [[homotopy theory]] by way of pertinent examples. The original [[Dijkgraaf-Witten theory]] is that in dimension 3 (reviewed in \emph{\hyperlink{3dDWLocalPrequantumFieldTheory}{3d Local prequantum field theory}} below), which was introduced in (\href{Dijkgraaf-Witten+theory#DijkgraafWitten90}{Dijkgraaf-Witten 90}) as a toy version of standard 3d [[Chern-Simons theory]] for [[simply connected topological space|simply connected]] [[gauge group]]. A comprehensive account with first indications of its role as a local (extended, multi-tiered) field theory then appeared in (\href{Dijkgraaf-Witten+theory#FreedQuinn93}{Freed-Quinn 93}), and ever since this has served as a testing ground for understanding the general principles of local field theory, e.g. (\href{Dijkgraaf-Witten+theory#Freed94}{Freed 94}), independently of the subtleties of giving meaning to concepts such as the path integral when the space of fields is not finite. In section 3 of (\hyperlink{FHLT}{FHLT 10}), the general prequantum formalization as in def. \ref{LocalPrequantumFieldWithAction} is sketched for Dijkgraaf-Witten type theories, and in section 8 there the quantization of these theories to genuine local quantum field theories is sketched. \hypertarget{1dDWTheory}{}\paragraph*{{1d Dijkgraaf-Witten theory}}\label{1dDWTheory} [[Dijkgraaf-Witten theory]] in [[dimension]] 1 is what results when one regards a [[group character]] of a [[finite group]] $G$ as a local [[action functional]] in the sense of def. \ref{LocalPrequantumFieldWithAction}. We give now an expository discussion of this simple but instructive example of a local prequantum field theory and in the course of it introduce some of the relevant basics of the [[homotopy theory]] of [[groupoids]] ([[homotopy 1-types]]). \begin{enumerate}% \item \hyperlink{FiniteGaugeGroups}{Finite gauge groups} \item \hyperlink{GroupoidsAndBasicHomotopy1TypeTheory}{Essence of gauge theory: Groupoids and basic homotopy 1-type theory} \item \hyperlink{CorrespondencesOfGroupoids}{Trajectories of fields: Correspondences of groupoids} \item \hyperlink{1dDWLocalFieldTheory}{Action functionals on spaces of trajectories: Correspondences of groupoids over the space of phases} \end{enumerate} The punchline of this section is little theorem \ref{GroupCharacterPrequantumTheoryOnCircle} at the very end, which states that the 1d local prequantum field theory whose local action functional is the delooping of a [[group character]] assigns to the circle the [[action functional]] which is again that group character. The proof of this statement is an unwinding of the basic mechanisms of local prequantum field theories. \hypertarget{FiniteGaugeGroups}{}\paragraph*{{Finite gauge groups}}\label{FiniteGaugeGroups} First some brief remarks, before we dive into the formalism. A [[group character]] on a [[finite group]] $G$ is just a [[group]] [[homomorphism]] $G \to U(1)$ to the [[circle group]] (taken here as a [[discrete group]]). In order to regard this as an [[action functional]], we are to take $G$ as the [[gauge group]] of a physical field theory. The simplest such case is a field theory such that on the point there is just a single possible field configuration, to be denoted $\phi_0$. The reader familiar with basics of traditional [[gauge theory]] may think of the fields as being [[gauge field]] [[connections]] (``[[vector potentials]]''), hence represented by [[differential 1-forms]]. But on the point there is only the vanishing 1-form, hence just a single field configuration $\phi_0$. Even though there is just a single such field, that $G$ is the [[gauge group]] means that for each [[element]] $g \in G$ there is a [[gauge transformation]] that takes $\phi_0$ to itself, a state of affairs which we suggestively denote by the symbols \begin{displaymath} \phi_0 \stackrel{g}{\to} \phi_0 \,. \end{displaymath} Again, the reader familiar with traditional [[gauge theory]] may think of [[gauge transformations]] as in [[Yang-Mills theory]]. Over the point these form, indeed, just the [[gauge group]] itself, taking the trivial field configuration to itself. That the [[gauge group]] is indeed a [[group]] means that gauge transformations can be applied consecutively, which we express in symbols as \begin{displaymath} \itexarray{ && \phi_0 \\ & {}^{\mathllap{g_1}}\nearrow && \searrow^{\mathrlap{g_2}} \\ \phi_0 && \underset{g_2 \cdot g_1}{\to} && \phi_0 } \,. \end{displaymath} Regarded this way, we say the [[gauge group]] acting on the single field $\phi_0$ forms a \emph{[[groupoid]]}, whose single \emph{[[object]]} is $\phi_0$ and whose set of \emph{[[morphisms]]} is $G$. Of course in richer field theories there may be more than one field configuration, clearly, with gauge transformations between them. If $\phi_0$ and $\phi_1$ are two field configurations and $g$ is a gauge transformation taking one to the other, we may usefully denote this by \begin{displaymath} \itexarray{ \phi_0 &\stackrel{g_1}{\to}& \phi_1 } \,. \end{displaymath} Similarly then for yet another gauge configuration to another field configuration \begin{displaymath} \itexarray{ \phi_1 &\stackrel{g_2}{\to}& \phi_2 } \end{displaymath} then composing them gives the picture \begin{displaymath} \itexarray{ && \phi_1 \\ & {}^{\mathllap{g_1}}\nearrow && \searrow^{\mathrlap{g_2}} \\ \phi_0 && \underset{g_2 \cdot g_1}{\to} && \phi_2 } \,. \end{displaymath} We now discuss this notion of [[groupoids]] more formally. \hypertarget{GroupoidsAndBasicHomotopy1TypeTheory}{}\paragraph*{{Essence of gauge theory: Groupoids and basic homotopy 1-type theory}}\label{GroupoidsAndBasicHomotopy1TypeTheory} The following is a quick review of basics of [[groupoids]] and their [[homotopy theory]] ([[homotopy 1-type]]-theory), geared towards the constructions and fact needed for 1-dimensional Dijkgraaf-Witten theory. For more along these lines see also at \emph{[[geometry of physics -- homotopy types]]} \begin{defn} \label{Groupoid}\hypertarget{Groupoid}{} A ([[small category|small]]) \emph{[[groupoid]]} $\mathcal{G}_\bullet$ is \begin{itemize}% \item a pair of [[sets]] $\mathcal{G}_0 \in Set$ (the set of [[objects]]) and $\mathcal{G}_1 \in Set$ (the set of [[morphisms]]) \item equipped with [[functions]] \begin{displaymath} \itexarray{ \mathcal{G}_1 \times_{\mathcal{G}_0} \mathcal{G}_1 &\stackrel{\circ}{\longrightarrow}& \mathcal{G}_1 & \stackrel{\overset{t}{\longrightarrow}}{\stackrel{\overset{i}{\leftarrow}}{\underset{s}{\longrightarrow}}}& \mathcal{G}_0 }\,, \end{displaymath} where the [[fiber product]] on the left is that over $\mathcal{G}_1 \stackrel{t}{\to} \mathcal{G}_0 \stackrel{s}{\leftarrow} \mathcal{G}_1$, \end{itemize} such that \begin{itemize}% \item $i$ takes values in [[endomorphisms]]; \begin{displaymath} t \circ i = s \circ i = id_{\mathcal{G}_0}, \;\;\; \end{displaymath} \item $\circ$ defines a partial [[composition]] operation which is [[associativity|associative]] and [[unitality|unital]] for $i(\mathcal{G}_0)$ the [[identities]]; in particular $s (g \circ f) = s(f)$ and $t (g \circ f) = t(g)$; \item every morphism has an [[inverse]] under this composition. \end{itemize} \end{defn} \begin{remark} \label{}\hypertarget{}{} This data is visualized as follows. The set of morphisms is \begin{displaymath} \mathcal{G}_1 = \left\{ \phi_0 \stackrel{k}{\to} \phi_1 \right\} \end{displaymath} and the set of pairs of composable morphisms is \begin{displaymath} \mathcal{G}_2 \coloneqq \mathcal{G}_1 \underset{\mathcal{G}_0}{\times} \mathcal{G}_1 = \left\{ \itexarray{ && \phi_1 \\ & {}^{\mathllap{k_1}}\nearrow && \searrow^{\mathrlap{k_2}} \\ \phi_0 && \stackrel{k_2 \circ k_1}{\to} && \phi_2 } \right\} \,. \end{displaymath} The functions $p_1, p_2, \circ \colon \mathcal{G}_2 \to \mathcal{G}_1$ are those which send, respectively, these triangular diagrams to the left morphism, or the right morphism, or the bottom morphism. \end{remark} \begin{example} \label{SetAsGroupoid}\hypertarget{SetAsGroupoid}{} For $X$ a [[set]], it becomes a groupoid by taking $X$ to be the set of objects and adding only precisely the [[identity]] morphism from each object to itself \begin{displaymath} \left( X \stackrel {\overset{id}{\longrightarrow}} { \stackrel{\overset{id}{\longleftarrow}}{\underset{id}{\longrightarrow}} } X \right) \,. \end{displaymath} \end{example} \begin{example} \label{DeloopingGroupoid}\hypertarget{DeloopingGroupoid}{} For $G$ a [[group]], its [[delooping]] [[groupoid]] $(\mathbf{B}G)_\bullet$ has \begin{itemize}% \item $(\mathbf{B}G)_0 = \ast$; \item $(\mathbf{B}G)_1 = G$. \end{itemize} For $G$ and $K$ two groups, group homomorphisms $f \colon G \to K$ are in [[natural bijection]] with groupoid homomorphisms \begin{displaymath} (\mathbf{B}f)_\bullet \;\colon\; (\mathbf{B}G)_\bullet \to (\mathbf{B}K)_\bullet \,. \end{displaymath} In particular a [[group character]] $c \colon G \to U(1)$ is equivalently a groupoid homomorphism \begin{displaymath} (\mathbf{B}c)_\bullet \;\colon\; (\mathbf{B}G)_\bullet \to (\mathbf{B}U(1))_\bullet \,. \end{displaymath} Here, for the time being, all groups are [[discrete groups]]. Since the [[circle group]] $U(1)$ also has a standard structure of a [[Lie group]], and since later for the discussion of Chern-Simons type theories this will be relevant, we will write from now on \begin{displaymath} \flat U(1) \in Grp \end{displaymath} to mean explicitly the [[discrete group]] underlying the circle group. (Here ``$\flat$'' denotes the ``[[flat modality]]''.) \end{example} \begin{example} \label{ActionGroupoid}\hypertarget{ActionGroupoid}{} For $X$ a [[set]], $G$ a [[discrete group]] and $\rho \colon X \times G \to X$ an [[action]] of $G$ on $X$ (a [[permutation representation]]), the \textbf{[[action groupoid]]} or \textbf{[[homotopy quotient]]} of $X$ by $G$ is the groupoid \begin{displaymath} X//_\rho G = \left( X \times G \stackrel{\overset{\rho}{\longrightarrow}}{\underset{p_1}{\longrightarrow}} X \right) \end{displaymath} with composition induced by the product in $G$. Hence this is the groupoid whose objects are the elements of $X$, and where [[morphisms]] are of the form \begin{displaymath} x_1 \stackrel{g}{\to} x_2 = \rho(x_1)(g) \end{displaymath} for $x_1, x_2 \in X$, $g \in G$. \end{example} As an important special case we have: \begin{example} \label{BGGroupoidAsActionGroupoid}\hypertarget{BGGroupoidAsActionGroupoid}{} For $G$ a [[discrete]] group and $\rho$ the trivial action of $G$ on the point $\ast$ (the singleton set), the coresponding [[action groupoid]] according to def. \ref{ActionGroupoid} is the [[delooping]] groupoid of $G$ according to def. \ref{DeloopingGroupoid}: \begin{displaymath} (\ast //G)_\bullet = (\mathbf{B}G)_\bullet \,. \end{displaymath} Another canonical action is the action of $G$ on itself by right multiplication. The corresponding action groupoid we write \begin{displaymath} (\mathbf{E}G)_\bullet \coloneqq G//G \,. \end{displaymath} The constant map $G \to \ast$ induces a canonical morphism \begin{displaymath} \itexarray{ G//G & \simeq & \mathbf{E}G \\ \downarrow && \downarrow \\ \ast //G & \simeq & \mathbf{B}G } \,. \end{displaymath} This is known as the $G$-[[universal principal bundle]]. See below in \ref{PullbackOfEGGroupoidAsHomotopyFiberProduct} for more on this. \end{example} \begin{example} \label{}\hypertarget{}{} The [[interval]] $I$ is the groupoid with \begin{itemize}% \item $I_0 = \{a,b\}$; \item $I_1 = \{\mathrm{id}_a, \mathrm{id}_b, a \to b \}$. \end{itemize} \end{example} \begin{example} \label{FundamentalGroupoid}\hypertarget{FundamentalGroupoid}{} For $\Sigma$ a [[topological space]], its [[fundamental groupoid]] $\Pi_1(\Sigma)$ is \begin{itemize}% \item $\Pi_1(\Sigma)_0 =$ points in $X$; \item $\Pi_1(\Sigma)_1 =$ [[continuous function|continuous]] paths in $X$ modulo [[homotopy]] that leaves the endpoints fixed. \end{itemize} \end{example} \begin{example} \label{PathSpaceGroupoid}\hypertarget{PathSpaceGroupoid}{} For $\mathcal{G}_\bullet$ any groupoid, there is the [[path space]] groupoid $\mathcal{G}^I_\bullet$ with \begin{itemize}% \item $\mathcal{G}^I_0 = \mathcal{G}_1 = \left\{ \itexarray{ \phi_0 \\ \downarrow^{\mathrlap{k}} \\ \phi_1 } \right\}$; \item $\mathcal{G}^I_1 =$ [[commuting diagram|commuting squares]] in $\mathcal{G}_\bullet$ = $\left\{ \itexarray{ \phi_0 &\stackrel{h_0}{\to}& \tilde \phi_0 \\ {}^{\mathllap{k}}\downarrow && \downarrow^{\mathrlap{\tilde k}} \\ \phi_1 &\stackrel{h_1}{\to}& \tilde \phi_1 } \right\} \,.$ \end{itemize} This comes with two canonical homomorphisms \begin{displaymath} \mathcal{G}^I_\bullet \stackrel{\overset{ev_1}{\longrightarrow}}{\underset{ev_0}{\longrightarrow}} \mathcal{G}_\bullet \end{displaymath} which are given by endpoint evaluation, hence which send such a commuting square to either its top or its bottom hirizontal component. \end{example} \begin{defn} \label{}\hypertarget{}{} For $f_\bullet, g_\bullet : \mathcal{G}_\bullet \to \mathcal{K}_\bullet$ two morphisms between groupoids, a \emph{[[homotopy]]} $f \Rightarrow g$ (a [[natural transformation]]) is a homomorphism of the form $\eta_\bullet : \mathcal{G}_\bullet \to \mathcal{K}^I_\bullet$ (with [[codomain]] the [[path space object]] of $\mathcal{K}_\bullet$ as in example \ref{PathSpaceGroupoid}) such that it fits into the diagram as depicted here on the right: \begin{displaymath} \itexarray{ & \nearrow \searrow^{\mathrlap{f_\bullet}} \\ \mathcal{G} &\Downarrow^{\mathrlap{\eta}}& \mathcal{K} \\ & \searrow \nearrow_{\mathrlap{g_\bullet}} } \;\;\;\; \coloneqq \;\;\;\; \itexarray{ && \mathcal{K}_\bullet \\ & {}^{\mathllap{f_\bullet}}\nearrow & \uparrow^{\mathrlap{(ev_1)_\bullet}} \\ \mathcal{G}_\bullet &\stackrel{\eta_\bullet}{\to}& \mathcal{K}^I_\bullet \\ & {}_{\mathllap{g_\bullet}}\searrow & \downarrow^{\mathrlap{(ev_0)_\bullet}} \\ && \mathcal{K} } \,. \end{displaymath} \end{defn} \begin{defn} \label{GroupoidsAsHomotopy1Types}\hypertarget{GroupoidsAsHomotopy1Types}{} Here and in the following, the convention is that we write \begin{itemize}% \item $\mathcal{G}_\bullet$ (with the subscript decoration) when we regard groupoids with just homomorphisms ([[functors]]) between them, \item $\mathcal{G}$ (without the subscript decoration) when we regard groupoids with homomorphisms ([[functors]]) between them and [[homotopies]] ([[natural transformations]]) between these \begin{displaymath} \itexarray{ & \nearrow \searrow^{\mathrlap{f}} \\ X &\Downarrow& Y \\ & \searrow \nearrow_{g} } \,. \end{displaymath} \end{itemize} The unbulleted version of groupoids are also called \emph{[[homotopy 1-types]]} (or often just their [[homotopy]]-[[equivalence classes]] are called this way.) Below we generalize this to arbitrary homotopy types (def. \ref{KanComplexesAsHomotopyTypes}). \end{defn} \begin{example} \label{MappingGroupoid}\hypertarget{MappingGroupoid}{} For $X,Y$ two groupoids, the [[internal hom|mapping groupoid]] $[X,Y]$ or $Y^X$ is \begin{itemize}% \item $[X,Y]_0 =$ homomorphisms $X \to Y$; \item $[X,Y]_1 =$ homotopies between such. \end{itemize} \end{example} \begin{defn} \label{HomotopyEquivalenceOfGroupoids}\hypertarget{HomotopyEquivalenceOfGroupoids}{} A ([[homotopy equivalence|homotopy-]]) \emph{[[equivalence of groupoids]]} is a morphism $\mathcal{G} \to \mathcal{K}$ which has a left and right [[inverse]] up to [[homotopy]]. \end{defn} \begin{example} \label{BZIsPiSOne}\hypertarget{BZIsPiSOne}{} The map \begin{displaymath} \mathbf{B}\mathbb{Z} \stackrel{}{\to} \Pi(S^1) \end{displaymath} which picks any point and sends $n \in \mathbb{Z}$ to the loop based at that point which winds around $n$ times, is an [[equivalence of groupoids]]. \end{example} \begin{prop} \label{DiscreteGroupoidIsDijointUnioonOfDeloopings}\hypertarget{DiscreteGroupoidIsDijointUnioonOfDeloopings}{} Assuming the [[axiom of choice]] in the ambient [[set theory]], every groupoid is equivalent to a disjoint union of [[delooping]] groupoids, example \ref{DeloopingGroupoid} -- a \emph{[[skeleton]]}. \end{prop} \begin{remark} \label{}\hypertarget{}{} The statement of prop. \ref{DiscreteGroupoidIsDijointUnioonOfDeloopings} becomes false as when we pass to groupoids that are equipped with [[geometry|geometric]] structure. This is the reason why for discrete geometry all [[Chern-Simons theory|Chern-Simons]]-type field theories (namely [[Dijkgraaf-Witten theory]]-type theories) fundamentally involve just groups (and higher groups), while for nontrivial geometry there are genuine groupoid theories, for instance the [[AKSZ sigma-models]]. But even so, [[Dijkgraaf-Witten theory]] is usefully discussed in terms of groupoid technology, in particular since the choice of equivalence in prop. \ref{DiscreteGroupoidIsDijointUnioonOfDeloopings} is not canonical. \end{remark} \begin{defn} \label{HomotopyFiberProductOfGroupoids}\hypertarget{HomotopyFiberProductOfGroupoids}{} Given two morphisms of groupoids $X \stackrel{f}{\to} B \stackrel{g}{\leftarrow} Y$ their \emph{[[homotopy fiber product]]} \begin{displaymath} \itexarray{ X \underset{B}{\times} Y &\stackrel{}{\to}& X \\ \downarrow &\swArrow& \downarrow^{\mathrlap{f}} \\ Y &\underset{g}{\to}& B } \end{displaymath} is the [[limit]] [[cone]] \begin{displaymath} \itexarray{ X_\bullet \underset{B_\bullet}{\times} B^I_\bullet \underset{B_\bullet}{\times} Y_\bullet &\to& &\to& X_\bullet \\ \downarrow && && \downarrow^{\mathrlap{f_\bullet}} \\ && B^I_\bullet &\underset{(ev_0)_\bullet}{\to}& B_\bullet \\ \downarrow && \downarrow^{\mathrlap{(ev_1)_\bullet}} \\ Y_\bullet &\underset{g_\bullet}{\to}& B_\bullet } \,, \end{displaymath} hence the ordinary iterated [[fiber product]] over the [[path space]] groupoid, as indicated. \end{defn} \begin{remark} \label{FiberProductsOfGroupoidsComponentwise}\hypertarget{FiberProductsOfGroupoidsComponentwise}{} An ordinary fiber product $X_\bullet \underset{B_\bullet}{\times}Y_\bullet$ of groupoids is given simply by the fiber product of the underlying sets of objects and morphisms: \begin{displaymath} (X_\bullet \underset{B_\bullet}{\times}Y_\bullet)_i = X_i \underset{B_i}{\times} Y_i \,. \end{displaymath} \end{remark} \begin{example} \label{PullbackOfEGGroupoidAsHomotopyFiberProduct}\hypertarget{PullbackOfEGGroupoidAsHomotopyFiberProduct}{} For $X$ a [[groupoid]], $G$ a [[group]] and $X \to \mathbf{B}G$ a map into its [[delooping]], the [[pullback]] $P \to X$ of the $G$-[[universal principal bundle]] of example \ref{BGGroupoidAsActionGroupoid} is equivalently the [[homotopy fiber product]] of $X$ with the point over $\mathbf{B}G$: \begin{displaymath} P \simeq X \underset{\mathbf{B}G}{\times} \ast \,. \end{displaymath} Namely both squares in the following diagram are pullback squares \begin{displaymath} \itexarray{ P &\to& \mathbf{E}G &\to& \ast_\bullet \\ \downarrow && && \downarrow^{\mathrlap{}} \\ && (\mathbf{B}G)^I_\bullet &\underset{(ev_0)_\bullet}{\to}& (\mathbf{B}G)_\bullet \\ \downarrow && \downarrow^{\mathrlap{(ev_1)_\bullet}} \\ X_\bullet &\underset{}{\to}& (\mathbf{B}G)_\bullet } \,. \end{displaymath} (This is the first example of the more general phenomenon of [[universal principal infinity-bundles]].) \end{example} \begin{example} \label{LoopSpaceGroupoid}\hypertarget{LoopSpaceGroupoid}{} For $X$ a [[groupoid]] and $\ast \to X$ a point in it, we call \begin{displaymath} \Omega X \coloneqq \ast \underset{X}{\times} \ast \end{displaymath} the [[loop space object|loop space groupoid]] of $X$. For $G$ a group and $\mathbf{B}G$ its [[delooping]] groupoid from example \ref{DeloopingGroupoid}, we have \begin{displaymath} G \simeq \Omega \mathbf{B}G = \ast \underset{\mathbf{B}G}{\times} \ast \,. \end{displaymath} Hence $G$ is the [[loop space object]] of its own [[delooping]], as it should be. \end{example} \begin{proof} We are to compute the ordinary limiting cone $\ast \underset{\mathbf{B}G_\bullet}{\times} (\mathbf{B}G^I)_\bullet \underset{\mathbf{B}G_\bullet}{\times} \ast$ in \begin{displaymath} \itexarray{ &\to& &\to& \ast \\ \downarrow && && \downarrow^{\mathrlap{}} \\ && (\mathbf{B}G)^I_\bullet &\underset{(ev_0)_\bullet}{\to}& \mathbf{B}G_\bullet \\ \downarrow && \downarrow^{\mathrlap{(ev_1)_\bullet}} \\ \ast &\underset{}{\to}& \mathbf{B}G_\bullet } \,, \end{displaymath} In the middle we have the groupoid $(\mathbf{B}G)^I_\bullet$ whose objects are elements of $G$ and whose morphisms starting at some element are labeled by pairs of elements $h_1, h_2 \in G$ and end at $h_1 \cdot g \cdot h_2$. Using remark \ref{FiberProductsOfGroupoidsComponentwise} the limiting cone is seen to precisely pick those morphisms in $(\mathbf{B}G_\bullet)^I_\bullet$ such that these two elements are constant on the neutral element $h_1 = h_2 = e = id_{\ast}$, hence it produces just the elements of $G$ regarded as a groupoid with only identity morphisms, as in example \ref{SetAsGroupoid}. \end{proof} \begin{prop} \label{FreeLoopSpaceOfGroupoid}\hypertarget{FreeLoopSpaceOfGroupoid}{} The [[free loop space object]] is \begin{displaymath} [\Pi(S^1), X] \simeq X \underset{[\Pi(S^0), X]}{\times}X \end{displaymath} \end{prop} \begin{proof} Notice that $\Pi_1(S^0) \simeq \ast \coprod \ast$. Therefore the [[path space object]] $[\Pi(S^0), X_\bullet]^I_\bullet$ has \begin{itemize}% \item objects are pairs of morphisms in $X_\bullet$; \item morphisms are commuting squares of such. \end{itemize} Now the fiber product in def. \ref{HomotopyFiberProductOfGroupoids} picks in there those pairs of morphisms for which both start at the same object, and both end at the same object. Therefore $X_\bullet \underset{[\Pi(S^0), X_\bullet]_\bullet}{\times} [\Pi(S^0), X_\bullet]^I_\bullet \underset{[\Pi(S^0), X_\bullet]_\bullet}{\times} X$ is the groupoid whose \begin{itemize}% \item objects are diagrams in $X_\bullet$ of the form \begin{displaymath} \itexarray{ & \nearrow \searrow \\ x_0 && x_1 \\ & \searrow \nearrow } \end{displaymath} \item morphism are cylinder-diagrams over these. \end{itemize} One finds along the lines of example \ref{BZIsPiSOne} that this is equivalent to maps from $\Pi_1(S^1)$ into $X_\bullet$ and homotopies between these. \end{proof} \begin{remark} \label{}\hypertarget{}{} Even though all these models of the circle $\Pi_1(S^1)$ are equivalent, below the special appearance of the circle in the proof of prop. \ref{FreeLoopSpaceOfGroupoid} as the combination of two semi-circles will be important for the following proofs. As we see in a moment, this is the natural way in which the circle appears as the composition of an [[evaluation map]] with a [[coevaluation map]]. \end{remark} \begin{example} \label{AdjointActionGroupoidFromFreeLoopSpaceObject}\hypertarget{AdjointActionGroupoidFromFreeLoopSpaceObject}{} For $G$ a [[discrete group]], the [[free loop space object]] of its [[delooping]] $\mathbf{B}G$ is $G//_{ad} G$, the [[action groupoid]], def. \ref{ActionGroupoid}, of the [[adjoint action]] of $G$ on itself: \begin{displaymath} [\Pi(S^1), \mathbf{B}G] \simeq G//_{ad} G \,. \end{displaymath} \end{example} \begin{example} \label{}\hypertarget{}{} For an [[abelian group]] such as $\flat U(1)$ we have \begin{displaymath} [\Pi(S^1), \mathbf{B}\flat U(1)] \simeq \flat U(1)//_{ad} \flat U(1) \simeq (\flat U(1)) \times (\mathbf{B}\flat U(1)) \,. \end{displaymath} \end{example} \begin{example} \label{GroupCharacterAsClassFunctionByFreeLoopSpace}\hypertarget{GroupCharacterAsClassFunctionByFreeLoopSpace}{} Let $c \colon G \to \flat U(1)$ be a group homomorphism, hence a [[group character]]. By example \ref{DeloopingGroupoid} this has a [[delooping]] to a groupoid homomorphism \begin{displaymath} \mathbf{B}c \;\colon\; \mathbf{B}G \to \mathbf{B}\flat U(1) \,. \end{displaymath} Under the [[free loop space object]] construction this becomes \begin{displaymath} [\Pi(S^1), \mathbf{B}c] \;\colon\; [\Pi(S^1), \mathbf{B}G] \to [\Pi(S^1), \mathbf{B}\flat U(1)] \end{displaymath} hence \begin{displaymath} [\Pi(S^1), \mathbf{B}c] \;\colon\; G//_{ad}G \to \flat U(1) \times \mathbf{B}U(1) \,. \end{displaymath} So by postcomposing with the [[projection]] on the first factor we recover from the general [[homotopy theory]] of groupoids the statement that a group character is a [[class function]] on [[conjugacy classes]]: \begin{displaymath} [\Pi(S^1), \mathbf{B}c] \;\colon\; G//_{ad}G \to U(1) \,. \end{displaymath} \end{example} \hypertarget{CorrespondencesOfGroupoids}{}\paragraph*{{Trajectories of fields: Correspondences of groupoids}}\label{CorrespondencesOfGroupoids} With some basic [[homotopy theory]] of [[groupoids]] in hand, we can now talk about [[trajectories]] in finite gauge theories, namely about [[spans]]/[[correspondences]] of groupoids and their composition. These correspondences of groupoids encode [[trajectories]]/histories of [[field (physics)|field configurations]]. Namely consider a groupoid to be called $\mathbf{Fields} \in$ [[Grpd]], to be thought of as the [[moduli space]] of [[field (physics)|fields]] in some field theory, or equivalently and specifically as the [[target space]] of a [[sigma-model]] field theory. This just means that for $\Sigma$ any [[manifold]] thought of as [[spacetime]] or [[worldvolume]], the space of fields $\mathbf{Fields}(\Sigma)$ of the field theory on $\Sigma$ is the [[mapping stack]] ([[internal hom]]) from $\Sigma$ into $\mathbf{Fields}$, which means here for DW theory that it is the mapping groupoid, def. \ref{MappingGroupoid}, out of the fundamental groupoid, def. \ref{FundamentalGroupoid}, of $\Sigma$: \begin{displaymath} \mathbf{Fields}(\Sigma) = [\Pi_1(\Sigma), \mathbf{Fields}] \,. \end{displaymath} We think of the [[objects]] of the groupoid $[\Pi_1(\Sigma), \mathbf{Fields}]$ as being the fields themselves, and of the [[morphisms]] as being the [[gauge transformations]] between them. The example to be of interest in a moment is that where $\mathbf{Fields} = \mathbf{B}G$ is a [[delooping]] groupoid as in def. \ref{DeloopingGroupoid}, in which case the fields are equivalently [[flat connection|flat]] [[principal connections]]. In fact in the discrete and 1-dimensional case currently considered this is essentially the only example, due to prop. \ref{DiscreteGroupoidIsDijointUnioonOfDeloopings}, but for the general idea and for the more general cases considered further below, it is useful to have the notation allude to more general moduli spaces $\mathbf{Fields}$. The simple but crucial observation that shows why [[spans]]/[[correspondences]] of groupoids show up in prequantum field theory is the following. \begin{example} \label{}\hypertarget{}{} If $\Sigma$ is a [[cobordism]], hence a [[manifold with boundary]] with incoming [[boundary]] component $\Sigma_{in} \hookrightarrow \Sigma$ and outgoing boundary components $\Sigma_{out} \hookrightarrow \Sigma$, then the resulting [[cospan]] of manifolds \begin{displaymath} \itexarray{ && \Sigma \\ & \nearrow && \nwarrow \\ \Sigma_{in} && && \Sigma_{out} } \end{displaymath} is sent under the operation of mapping into the moduli space of fields \begin{displaymath} [\Pi_1(-), \mathbf{Fields}] \;\colon\; Mfds^{op} \to Grpd \end{displaymath} to a [[span]] of groupoids \begin{displaymath} \itexarray{ && [\Pi_1(\Sigma), \mathbf{Fields}] \\ & \swarrow && \searrow \\ [\Pi_1(\Sigma_{in}), \mathbf{Fields}] && && [\Pi_1(\Sigma_{out}), \mathbf{Fields}] } \,. \end{displaymath} Here the left and right homomorphisms are those which take a field configuration on $\Sigma$ and restrict it to the incoming and to the outgoing field configuration, respectively. (And this being a homomorphism of groupoids means that everything respects the [[gauge symmetry]] on the fields.) Hence if $[\Pi_1(\Sigma_{in,out}),\mathbf{Fields}]$ is thought of as the spaces of incoming and outgoing field configurations, respectively, then $[\Pi_1(\Sigma), \mathbf{Fields}]$ is to be interpreted as the space of [[trajectories]] (sometimes: \emph{histories}) of field cofigurations over [[spacetimes]]/[[worldvolumes]] of shape $\Sigma$. \end{example} This should make it plausible that specifying the field content of a 1-dimensional discrete gauge field theory is a functorial assignsment \begin{displaymath} \mathbf{Fields} \;\colon\; Bord_1 \to Span(Grpd) \end{displaymath} from a [[category of cobordisms]] of dimension one into a category of such [[spans]] of groupoids. It sends points to spaces of field configurations on the point and 1-dimensional manifolds such as the circle as spaces of trajectories of field configurations on them. Moreover, for a \emph{local} field theory it should be true that the field configurations on the circle, says, are determined from gluing the field configurations on any decomposition of the circle, notably a decomposition into two semi-circles. But since we are dealing with a [[topological field theory]], its field configurations on a contractible interval such as the semicircle will be equivalent to the field configurations on the point itself. The way that the fields on higher spheres in a topological field theory are induced from the fields on the point is by an analog of \emph{[[traces]]} for spaces of fields, and higher traces of such correspondences (the ``[[span trace]]''). This is because by the [[cobordism theorem]], the field configurations on, notably, the [[n-sphere]] are given by the $n$-fold [[span trace]] of the field configurations on the point, the trace of the traces of the \ldots{} of the 1-trace. This is because for instance the 1-sphere, hence the [[circle]] is, regarded as a 1-dimensional [[cobordism]] itself pretty much manifestly a [[trace]] on the point in the [[string diagram]] formulation of traces. \begin{displaymath} \itexarray{ && \ast^- \\ & \swarrow & & \nwarrow \\ \downarrow && && \uparrow \\ & \searrow && \nearrow \\ && \ast^+ } \,. \end{displaymath} Here $\ast^+$ is the point with its potitive orientation, and $\ast^-$ is its [[dual object]] in the [[category of cobordisms]], the point with the reverse orientation. Since, by this picture, the construction that produces the circle from the point is one that involves only the [[coevaluation map]] and [[evaluation]] map on the point regarded as a [[dualizable object]], a [[topological field theory]] $Z \colon Bord_n \to Span_n(\mathbf{H})$, since it respects all this structure, takes the circle to precisely the same kind of diagram, but now in $Span_n(\mathbf{H})^\otimes$, where it becomes instead the [[span trace]] on the space $\mathbf{Fields}(\ast)$ over the point. This we discuss now. Before talking about correspondences of groupoids, we need to organize the groupoids themselves a bit more. \begin{defn} \label{TwoOneCategory}\hypertarget{TwoOneCategory}{} A \textbf{[[(2,1)-category]]} $\mathcal{C}$ is \begin{enumerate}% \item a collection $\mathcal{C}_0$ -- the ``collection of [[objects]]''; \item for each [[tuple]] $(X,Y) \in \mathcal{C}_0 \times \mathcal{C}_0$ a [[groupoid]] $\mathcal{C}(X,Y)$ -- the \emph{[[hom-groupoid]]} from $X$ to $Y$; \item for each [[triple]] $(X,Y,Z) \in \mathcal{C}_0 \times \mathcal{C}_0 \times \mathcal{C}_0$ a groupoid homomorphism ([[functor]]) \begin{displaymath} \circ_{X,Y,Z} \colon \mathcal{C}(X,Y) \times \mathcal{C}(Y,Z) \to \mathcal{C}(X,Z) \end{displaymath} called \emph{[[composition]]} or \emph{[[horizontal composition]]} for emphasis; \item for each [[quadruple]] $(W,X,Y,Z,)$ a [[homotopy]] -- the \emph{[[associator]]} -- \begin{displaymath} \itexarray{ \mathcal{C}(W,X) \times \mathcal{C}(X,Y) \times \mathcal{C}(Y,Z) &\stackrel{}{\to}& \mathcal{C}(W,Y) \times \mathcal{C}(Y,Z) \\ \downarrow &\swArrow_{\alpha_{W,X,Y,Z}}& \downarrow \\ \mathcal{C}(W,X) \times \mathcal{C}(X,Z) &\stackrel{}{\to}& \mathcal{C}(W,Z) } \end{displaymath} (\ldots{}) and similarly a [[unitality]] homotopy (\ldots{}) \end{enumerate} such that for each [[quintuple]] $(V,W,X,Y,Z)$ the associators satisfy the [[pentagon identity]]. The [[objects]] of the [[hom-groupoid]] $\mathcal{C}(X,Y)$ we call the \emph{[[1-morphisms]]} from $X$ to $Y$, indicated by $X \stackrel{f}{\to} Y$, and the [[morphisms]] in $\mathcal{C}(X,Y)$ we call the [[2-morphisms]] of $\mathcal{C}$, indicated by \begin{displaymath} \itexarray{ \\ & \nearrow \searrow^{\mathrlap{f}} \\ X &\Downarrow& Y \\ & \searrow \nearrow_{\mathrlap{g}} } \,. \end{displaymath} If all associators $\alpha$ can and are chosen to be the [[identity]] then this is called a \emph{[[strict 2-category|strict (2,1)-category]]}. \end{defn} \begin{defn} \label{}\hypertarget{}{} Write [[Grpd]] for the [[strict 2-category|strict]] [[(2,1)-category]], def. \ref{TwoOneCategory}, whose \begin{itemize}% \item [[objects]] are [[groupoids]] $\mathcal{G}$; \item [[1-morphisms]] are [[functors]] $f \colon \mathcal{G} \to \mathcal{K}$; \item [[2-morphisms]] are [[homotopies]] between these. \end{itemize} \end{defn} \begin{defn} \label{OneSpansInOneGroupoids}\hypertarget{OneSpansInOneGroupoids}{} Write $Span_1(Grpd)$ for the [[(2,1)-category]] whose \begin{itemize}% \item [[objects]] are [[groupoids]]; \item [[1-morphisms]] are [[spans]]/[[correspondences]] of [[functors]], hence \begin{displaymath} \itexarray{ A &\leftarrow& X &\rightarrow& B } \,; \end{displaymath} \item [[2-morphisms]] are [[diagrams]] in [[Grpd]] of the form \begin{displaymath} \itexarray{ && X_1 \\ & \swarrow &\downarrow& \searrow \\ A &\seArrow& \downarrow^{\mathrlap{\simeq}} &\swArrow& B \\ & \nwarrow &\downarrow& \nearrow \\ && X_2 } \end{displaymath} \item [[composition]] is given by forming the [[homotopy fiber product]], def. \ref{HomotopyFiberProductOfGroupoids}, of the two adjacent homomorphisms of two spans, hence for two spans \begin{displaymath} X \stackrel{}{\leftarrow} K \rightarrow Y \end{displaymath} and \begin{displaymath} Y \stackrel{}{\leftarrow} L \rightarrow Z \end{displaymath} their composite is the span which is the outer part of the diagram \begin{displaymath} \itexarray{ && && K \underset{Y}{\times}L \\ && & {}^{\mathllap{p_1}}\swarrow && \searrow^{\mathrlap{p_2}} \\ && K && \swArrow && L \\ & \swarrow && \searrow && \swarrow && \searrow \\ X && && Y && && Z } \,. \end{displaymath} \end{itemize} \end{defn} \begin{defn} \label{}\hypertarget{}{} There is the structure of a [[symmetric monoidal (2,1)-category]] on $Span_1(Grpd)$ by degreewise [[Cartesian product]] in [[Grpd]]. \begin{displaymath} (X \leftarrow K \rightarrow Y) \otimes (\tilde X \leftarrow \tilde K \rightarrow \tilde Y) \;\coloneqq\; X \times \tilde X \leftarrow K \times \tilde K \rightarrow Y \times \tilde Y \,. \end{displaymath} \end{defn} \begin{defn} \label{}\hypertarget{}{} An [[object]] $X$ of a [[symmetric monoidal (2,1)-category]] $\mathcal{C}^\otimes$ is [[fully dualizable object|fully dualizable]] if there exists \begin{enumerate}% \item another object $X^\ast$, to be called the \emph{[[dual object]]}; \item a [[1-morphism]] $ev_X \colon X^\ast \otimes X \to \mathbb{I}$, to be called the \emph{[[evaluation map]]}; \item a [[1-morphism]] $coev_X \colon \mathbb{I} \to X \otimes X^\ast$, to be called the [[coevaluation map]]; \item [[2-morphisms]] \begin{displaymath} \itexarray{ && \rightarrow \\ & \nearrow &\Downarrow^{coev_{tr(X)}}& \searrow^{\mathrlap{id}_{\mathbb{I}}} \\ \mathbb{I} &\underset{coev_X}{\to}& X^\ast \otimes X &\underset{ev_X}{\to}& \mathbb{I} } \end{displaymath} and \begin{displaymath} \itexarray{ && \rightarrow \\ & \nearrow &\Uparrow^{ev_{tr(X)}}& \searrow^{\mathrlap{id}_{\mathbb{I}}} \\ \mathbb{I} &\underset{coev_X}{\to}& X^\ast \otimes X &\underset{ev_X}{\to}& \mathbb{I} } \end{displaymath} and \begin{displaymath} \itexarray{ && \rightarrow \\ & \nearrow &\Downarrow^{sa(X)}& \searrow^{\mathrlap{id}_{\mathbb{I}}} \\ X^\ast \otimes X &\underset{ev_X}{\to}& \mathbb{I} &\underset{coev_X}{\to}& X^\ast \otimes X } \end{displaymath} (the [[saddle]]) and \begin{displaymath} \itexarray{ && \rightarrow \\ & \nearrow &\Uparrow^{cosa(X)}& \searrow^{\mathrlap{id}_{\mathbb{I}}} \\ X^\ast \otimes X &\underset{ev_X}{\to}& \mathbb{I} &\underset{coev_X}{\to}& X^\ast \otimes X } \end{displaymath} (the co-saddle) \end{enumerate} such that these exhibit an [[adjunction]] and are themselves adjoint (\ldots{}). \end{defn} \begin{defn} \label{}\hypertarget{}{} Given a [[symmetric monoidal (2,1)-category]] $\mathcal{C}$, and a [[fully dualizable object]] $X \in \mathcal{C}$ and a [[1-morphism]] $f \colon X \to X$, the [[trace]] of $f$ is the [[composition]] \begin{displaymath} tr(f) \;\colon\; \mathbb{I} \stackrel{coev_X}{\to} X \otimes X^\ast \stackrel{f \otimes id_{X^\ast}}{\to} X \otimes X^\ast \stackrel{ev_x}{\to} \mathbb{I} \,. \end{displaymath} \end{defn} \begin{prop} \label{GroupoidInSpanOneIsSelfDual}\hypertarget{GroupoidInSpanOneIsSelfDual}{} Every [[groupoid]] $X \in Grpd \hookrightarrow Span_1(Grpd)$ is a [[dualizable object]] in $Span_1(Grpd)$, and in fact is self-dual. The [[evaluation map]] $ev_X$, hence the possible image of a symmetric monoidal functor $Bord_1 \to Span_1(Grpd)$ of a cobordism of the form \begin{displaymath} \itexarray{ && \leftarrow & \ast^- \\ & \swarrow \\ \downarrow \\ & \searrow \\ && \rightarrow & \ast^+ } \end{displaymath} is given by the [[span]] \begin{displaymath} \itexarray{ && X \\ & \swarrow && \searrow \\ \ast && && [\Pi_1(S^0),X] &\simeq& X \times X } \end{displaymath} and the [[coevaluation map]] $coev_X$ by the reverse span. For $X \in Grpd \hookrightarrow Span_1(Grpd)$ any object, the [[trace]] (``[[span trace]]'') of the [[identity]] on it, hence the image of \begin{displaymath} \itexarray{ && \ast^- \\ & \swarrow & & \nwarrow \\ \downarrow && && \uparrow \\ & \searrow && \nearrow \\ && \ast^+ } \end{displaymath} is its [[free loop space object]], prop. \ref{FreeLoopSpaceOfGroupoid}: \begin{displaymath} tr(id_X) \simeq \left( \itexarray{ && [\Pi_1(S^1), X] \\ & \swarrow && \searrow \\ \ast && && \ast } \right) \,. \end{displaymath} The second order covaluation map on the [[span trace]] of the identity is \begin{displaymath} \itexarray{ && && \ast \\ && && \uparrow \\ && && X \\ && && \downarrow \\ && && [\Pi(S^1), X] \\ && & \swarrow & & \searrow \\ \ast &\leftarrow& X &\rightarrow& [\Pi(S^0), X] &\leftarrow& X &\rightarrow& & \ast } \,. \end{displaymath} \end{prop} \begin{proof} By prop. \ref{GroupoidInSpanOneIsSelfDual} the [[trace]] of the identity is given by the composite span \begin{displaymath} \itexarray{ && && X \underset{[\Pi_1(S^1), X]}{\times} X \\ && & \swarrow && \searrow \\ && X && \swArrow && X \\ & \swarrow && \searrow && \swarrow && \searrow \\ \ast && && [\Pi_1(S^0),X] && && \ast } \,. \end{displaymath} By prop. \ref{FreeLoopSpaceOfGroupoid} we have \begin{displaymath} X \underset{[\Pi_1(S^1), X]}{\times} X \simeq [\Pi_1(S^1), X] \,. \end{displaymath} Along these lines one checks the required [[zig-zag identities]]. \end{proof} \hypertarget{1dDWLocalFieldTheory}{}\paragraph*{{Action functionals on spaces of trajectories: correspondences of groupoids over the space of phases}}\label{1dDWLocalFieldTheory} We have now assembled all the ingredients need in order to formally regard a [[group character]] $c \colon G \to U(1)$ on a [[discrete group]] as a local action functional of a prequantum field theory, hence as a [[fully dualizable object]] \begin{displaymath} S \;\coloneqq\; \left[ \itexarray{ \mathbf{B}G \\ \downarrow^{\mathrlap{c}} \\ \mathbf{B}\flat U(1) } \right] \;\in \; \mathrm{Span}_1(Grpd, \mathbf{B}\flat U(1)) \end{displaymath} in a [[(2,1)-category]] of correspondences of groupoids as in def. \ref{OneSpansInOneGroupoids}, but equipped with maps and homotopies between maps to the [[coefficient]] over $\mathbf{B}\flat U(1)$. This is described in def. \ref{OneSpansInOneGroupoidsOverBU} below. Before stating this, we recall for the 1-dimensional case the general story of def. \ref{LocalPrequantumFieldWithAction}. \begin{example} \label{HomotopyAsActionFunctional}\hypertarget{HomotopyAsActionFunctional}{} Given a [[discrete groupoid]] $X$, [[functions]] \begin{displaymath} \exp(i S) \colon X \to \flat U(1) \end{displaymath} are in [[natural bijection]] with [[homotopies]] of the form \begin{displaymath} \itexarray{ && X \\ & \swarrow && \searrow \\ \ast && \swArrow_{\phi} && \ast \\ & \searrow && \swarrow \\ && \mathbf{B}\flat U(1) } \,, \end{displaymath} where the function corresponding to this homotopy is that given by the unique factorization through the [[homotopy fiber product]] $\flat U(1) \simeq \ast \underset{\mathbf{B}\flat U(1)}{\times} \ast$ (example \ref{LoopSpaceGroupoid}) as shown on the right of \begin{displaymath} \itexarray{ && X \\ & \swarrow && \searrow \\ \ast && \swArrow_{\phi} && \ast \\ & \searrow && \swarrow \\ && \mathbf{B}\flat U(1) } \;\;\;\; \simeq \;\;\;\; \itexarray{ && X \\ &\swarrow& \downarrow^{\mathrlap{\exp(i S)}} & \searrow \\ && \flat U(1) \\ \downarrow & \swarrow && \searrow & \downarrow \\ \ast && \swArrow && \ast \\ & \searrow && \swarrow \\ && \mathbf{B}\flat U(1) } \,, \end{displaymath} \end{example} This means that if we have an [[action functional]] on a space of [[trajectories]], and if these trajectories are given by [[spans]]/[[correspondences]] of groupoids as discussed above, then the action functional is naturally expressed as the homotopy filling a completion of the span to a square diagram over $\mathbf{B}\flat U(1)$. Therefore we cosider the following. \begin{defn} \label{OneSpansInOneGroupoidsOverBU}\hypertarget{OneSpansInOneGroupoidsOverBU}{} Write $Span_1(Grpd, \flat\mathbf{B}U(1))$ for the [[(2,1)-category]] whose \begin{itemize}% \item [[objects]] are [[groupoids]] $X$ equipped with a morpism \begin{displaymath} \left[ \itexarray{ X \\ \downarrow^{\mathrlap{f}} \\ \mathbf{B}\flat U(1) } \right] \end{displaymath} \item [[morphisms]] are [[spans]] $X_1 \leftarrow Y \rightarrow X_2$ equipped with a [[homotopy]] $\phi$ in \begin{displaymath} \itexarray{ && Y \\ & {}^{\mathllap{f_1}}\swarrow && \searrow^{\mathrlap{f_2}} \\ X_1 && \swArrow_{\phi} && X_2 \\ & \searrow && \swarrow \\ && \mathbf{B}\flat U(1) } \end{displaymath} \item [[2-morphisms]] are morphism of spans compatible with the maps to $\mathbf{B}\flat U(1)$ in the evident way. \end{itemize} The operation of [[composition]] is as in $Span_1(Grpd)$, def. \ref{OneSpansInOneGroupoids} on the upper part of these diagrams, naturally extended to the whole diagrams by composition of the [[homotopies]] filling the squares that appear. \end{defn} \begin{prop} \label{}\hypertarget{}{} $Span_1(Grpd, \mathbf{B}\flat U(1))$ carries the structure of a [[symmetric monoidal (infinity,n)-category|symmetric monoidal (2,1)-category]] where the [[tensor product]] is given by \begin{displaymath} \left[ \itexarray{ X_1 \\ \downarrow^{\mathrlap{f_1}} \\ \mathbf{B}\flat U(1) } \right] \otimes \left[ \itexarray{ X_2 \\ \downarrow^{\mathrlap{f_2}} \\ \mathbf{B}\flat U(1) } \right] \;\; \coloneqq \;\; \left[ \itexarray{ X_1 \times X_2 \\ \downarrow^{\mathrlap{f_1 \circ p_1 + f_2 \circ p_2}} \\ \mathbf{B}\flat U(1) } \right] \,. \end{displaymath} \end{prop} \begin{remark} \label{}\hypertarget{}{} There is an evident [[forgetful functor|forgetful]] [[(2,1)-functor]] \begin{displaymath} Span_1(Grpd, \mathbf{B}\flat U(1)) \to Span_1(Grpd) \end{displaymath} which forgets the maps to $\mathbf{B}\flat U(1)$ and the homotopies between them. This is a [[monoidal (infinity,1)-functor|monoidal (2,1)-functor]]. \end{remark} As generalization of prop. \ref{GroupoidInSpanOneIsSelfDual} we now have the following: \begin{prop} \label{}\hypertarget{}{} Every object \begin{displaymath} \left[ \itexarray{ X \\ \downarrow^{\mathrlap{f}} \\ \mathbf{B}\flat U(1) } \right] \in Span_1(Grpd,\mathbf{B}\flat U(1)) \end{displaymath} is a [[dualizable object]], with dual object \begin{displaymath} \left[ \itexarray{ X \\ \downarrow^{-\mathrlap{f}} \\ \mathbf{B}\flat U(1) } \right] \end{displaymath} and with [[evaluation map]] given by \begin{displaymath} \itexarray{ && X \\ & \swarrow && \searrow \\ \ast && \swArrow_{\mathrlap{\simeq}} && X \times X \\ & {}_{\mathllap{0}}\searrow && \swarrow_{\mathrlap{f \circ p_1 - f \circ p_2}} \\ && \mathbf{B}\flat U(1) } \,. \end{displaymath} \end{prop} In conclusion we may now compute what the 1-dimensional prequantum field theory defined by a group character $c \colon G \to U(1)$ regarded as a local action functional assigns to the [[circle]]. \begin{theorem} \label{GroupCharacterPrequantumTheoryOnCircle}\hypertarget{GroupCharacterPrequantumTheoryOnCircle}{} The prequantum field theory defined by a [[group character]] \begin{displaymath} \left[ \itexarray{ \mathbf{Field} \\ \downarrow^{\mathrlap{\exp(i S)}} \\ \flat \mathbf{B}U(1) } \right] \;\; \coloneqq \;\; \left[ \itexarray{ \mathbf{B}G \\ \downarrow^{\mathrlap{\mathbf{B}\mathrlap{c}}} \\ \flat \mathbf{B}U(1) } \right] \in Span_1(Grpd,\mathbf{B}\flat U(1)) \end{displaymath} assigns to the [[circle]] the [[trace]] of the identity on this object, which under the identifications of example \ref{LoopSpaceGroupoid}, example \ref{GroupCharacterAsClassFunctionByFreeLoopSpace}, and example \ref{HomotopyAsActionFunctional} is the group character itself: \begin{displaymath} \itexarray{ && && [\Pi_1(S^1), \mathbf{B}G] \\ && & \swarrow && \searrow \\ && \mathbf{B}G && \swArrow && \mathbf{B}G \\ & \swarrow && \searrow && \swarrow && \searrow \\ \ast && && \mathbf{B}G \times \mathbf{B}G && && \ast \\ &{}_0\searrow & && \downarrow^{\mathrlap{\exp(i S \circ p_1 - i S \circ p_2)}} &&& \swarrow_{0} \\ &&&& \mathbf{B}\flat U(1) } \;\;\; \simeq \;\;\; \itexarray{ && G//G \\ && \simeq \\ && [\Pi(S^1), \mathbf{B}G] \\ && \downarrow^{\mathrlap{c}} \\ && \flat U(1) \\ & \swarrow && \searrow \\ \ast && \swArrow && \ast \\ & \searrow && \swarrow \\ && \mathbf{B}\flat U(1) } \;\;\; \end{displaymath} Here the [[action functional]] on the right sends a [[field configuration]] $g \in G = [\Pi(S^1), \mathbf{B}G]_0$ to its value $c(g) \in U(1) = (\flat \mathbf{B}U(1))_1$ under the [[group character]]. \end{theorem} \begin{remark} \label{1dPathIntegralViaSchur}\hypertarget{1dPathIntegralViaSchur}{} It follows that in a discussion of [[quantization]] the [[path integral]] for the [[partition function]] of 1d DW theory is given by the [[Schur inner product|Schur integral]] over the [[group character]] $c$. \begin{displaymath} \frac{1}{\vert G \vert} \underset{g\in G}{\sum} c(g) = \langle c,1\rangle \,. \end{displaymath} \end{remark} In conclusion, [[1-dimensional Dijkgraaf-Witten theory]] as a prequantum field theory comes down to be essentially a geometric interpretation of what [[group characters]] are and do. One may regard this as a simple example of [[geometric representation theory]]. Simple as this example is, it contains in it the seeds of many of the interesting aspects of richer prequantum field theories. \hypertarget{2d_dijkgraafwitten_theory}{}\paragraph*{{2d Dijkgraaf-Witten theory}}\label{2d_dijkgraafwitten_theory} The [[group character]] $c : G \to U(1)$ which defines 1-dimensional prequantum Dijkgraaf-Witten theory in \hyperlink{1dDWTheory}{1d Dijkgraaf-Witten theory} is equivalently a [[cocycle]] in degree-1 [[group cohomology]] \begin{displaymath} [c] \in H_{\mathrm{Grp}}(G,U(1)) \,. \end{displaymath} More familiar are maybe cocycles in higher degree. In view of the above it is plausible that one may interpret a cocycle in degree-$n$ group cohomology, for all $n \in \mathbb{N}$ as a higher order [[action functional]] $\mathbf{B}G \to \flat\mathbf{B}^n U(1)$ and induce an $n$-dimensional local prequantum Dijkgraaf-Witten-type theory from it. Here we discuss the case of $n = 2$ where a group 2-cocycle is regarded as the local action functional of a 2-dimensional Digjkgraaf-Witten field theory. We use this as occasion to introduce a bit of the theory of [[2-groups]] and their [[homotopy theory]] ([[homotopy 2-type]]-theory). Below in \emph{\hyperlink{3dDWLocalPrequantumFieldTheory}{3d DW theory}} we then turn to the fully general case of [[∞-groupoid]]-theory. \hypertarget{2groupoids_and_basic_homotopy_2type_theory}{}\paragraph*{{2-Groupoids and basic homotopy 2-type theory}}\label{2groupoids_and_basic_homotopy_2type_theory} (\ldots{}) \hypertarget{3dDWLocalPrequantumFieldTheory}{}\paragraph*{{$n$d Dijkgraaf-Witten theory}}\label{3dDWLocalPrequantumFieldTheory} In view of the above it is plausible that one may interpret a cocycle in degree-$n$ group cohomology, for all $n \in \mathbb{N}$ as a higher order [[action functional]] $\mathbf{B}G \to \flat\mathbf{B}^n U(1)$ and induce an $n$-dimensional local prequantum Dijkgraaf-Witten-type theory from it. Here we review how to formalize this and then consider the example of DW theory in arbitrary dimension $n$. \hypertarget{EssenceOfHigherGaugeTheoryBasicHomotopyTheory}{}\paragraph*{{Essence of higher gauge theory: $\infty$-Groupoids and basic homotopy theory}}\label{EssenceOfHigherGaugeTheoryBasicHomotopyTheory} We briefly recall here some basic definitions and facts of [[∞-groupoids]] and their [[homotopy theory]], geared towards their use in 3-dimensional [[Dijkgraaf-Witten theory]] and generally in [[∞-Dijkgraaf-Witten theory]]. \hypertarget{HeuristicsOnCompositionAndInverses}{}\paragraph*{{Higher gauge transformations: Simplicial sets and Kan complexes}}\label{HeuristicsOnCompositionAndInverses} An [[∞-groupoid]] is first of all supposed to be a structure that consists of [[k-morphisms]] for all $k \in \mathbb{N}$, which for $k \geq 1$ go between $(k-1)$-morphisms. In the context of [[Kan complexes]], the tool for organizing such collections of [[k-morphisms]] is the notion of a \emph{[[simplicial set]]}, which models $k$-morphisms as being of the [[geometric shape for higher structures|shape]] of $k$-[[simplices]] -- a [[vertex]] for $k = 0$, an [[edge]] for $k = 1$, a [[triangle]] for $k = 2$, a [[tetrahedron]] for $k = 3$, and so on. This means that a simplicial set $K_\bullet$ is a sequence of [[sets]] $\{K_n\}_{n \in \mathbb{N}}$ (sets of $k$-simplex shaped $k$-morphisms for all $k$) equipped with [[functions]] $d_i \colon K_{k+1} \to K_{k}$ that send a $(k+1)$-simplex to its $i$-th face, and functions $s_i \colon K_k \to K_{k+1}$ that over a $k$-simplex ``erects a flat $(k+1)$-simplex'' in all possible ways (hence which inserts ``[[identities]]'' called ``degeneracies'' in this context). If we write $\Delta$ for the [[category]] whose [[objects]] are abstract cellular [[simplices]] and whose morphisms are all cellular maps between these, then such a simplicial set is equivalently a [[functor]] of the form \begin{displaymath} K \colon \Delta^{op} \to Set \end{displaymath} Hence we think of this as assigning \begin{itemize}% \item a set $[0] \mapsto K_0$ of [[objects]]; \item a set $[1] \mapsto K_1$ of [[morphism]]; \item a set $[2] \mapsto K_2$ of [[2-morphism]]; \item a set $[3] \mapsto K_3$ of [[3-morphism]]; \end{itemize} and generally \begin{itemize}% \item a set $[k] \mapsto K_k$ of [[k-morphism]]s \end{itemize} as well as specifying \begin{itemize}% \item functions $([n] \hookrightarrow [n+1]) \mapsto (K_{n+1} \to K_n)$ that send $n+1$-morphisms to their boundary $n$-morphisms; \item functions $([n+1] \to [n]) \mapsto (K_{n} \to K_{n+1})$ that send $n$-morphisms to [[identity]] $(n+1)$-morphisms on them. \end{itemize} The fact that $K$ is supposed to be a [[functor]] enforces that these assignments of sets and functions satisfy conditions that make consistent our interpretation of them as sets of $k$-morphisms and source and target maps between these. These are called the \emph{[[simplicial identities]]}. But apart from this source-target matching, a generic simplicial set does not yet encode a notion of [[composition]] of these morphisms. For instance for $\Lambda^1[2]$ the simplicial set consisting of two attached 1-cells \begin{displaymath} \Lambda^1[2] = \left\{ \itexarray{ && 1 \\ & \nearrow && \searrow \\ 0 &&&& 2 } \right\} \end{displaymath} and for $(f,g) : \Lambda^1[2] \to K$ an image of this situation in $K$, hence a pair $x_0 \stackrel{f}{\to} x_1 \stackrel{g}{\to} x_2$ of two \emph{composable} 1-morphisms in $K$, we want to demand that there exists a third 1-morphisms in $K$ that may be thought of as the [[composition]] $x_0 \stackrel{h}{\to} x_2$ of $f$ and $g$. But since we are working in [[higher category theory]] (and not to be [[evil]]), we want to identify this composite only up to a [[2-morphism]] equivalence \begin{displaymath} \itexarray{ && x_1 \\ & {}^{\mathllap{f}}\nearrow &\Downarrow^{\mathrlap{\simeq}}& \searrow^{\mathrlap{g}} \\ x_0 &&\stackrel{h}{\to}&& x_2 } \,. \end{displaymath} From the picture it is clear that this is equivalent to demanding that for $\Lambda^1[2] \hookrightarrow \Delta[2]$ the obvious inclusion of the two abstract composable 1-morphisms into the 2-simplex we have a diagram of morphisms of simplicial sets \begin{displaymath} \itexarray{ \Lambda^1[2] &\stackrel{(f,g)}{\to}& K \\ \downarrow & \nearrow_{\mathrlap{\exists h}} \\ \Delta[2] } \,. \end{displaymath} A simplicial set where for all such $(f,g)$ a corresponding such $h$ exists may be thought of as a collection of higher morphisms that is equipped with a notion of composition of adjacent 1-morphisms. For the purpose of describing [[groupoid]]al composition, we now want that this composition operation has all [[inverse]]s. For that purpose, notice that for \begin{displaymath} \Lambda^2[2] = \left\{ \itexarray{ && 1 \\ & && \searrow \\ 0 &&\to&& 2 } \right\} \end{displaymath} the simplicial set consisting of two 1-morphisms that touch at their end, hence for \begin{displaymath} (g,h) : \Lambda^2[2] \to K \end{displaymath} two such 1-morphisms in $K$, then if $g$ had an inverse $g^{-1}$ we could use the above composition operation to compose that with $h$ and thereby find a morphism $f$ connecting the sources of $h$ and $g$. This being the case is evidently equivalent to the existence of diagrams of morphisms of simplicial sets of the form \begin{displaymath} \itexarray{ \Lambda^2[2] &\stackrel{(g,h)}{\to}& K \\ \downarrow & \nearrow_{\mathrlap{\exists f}} \\ \Delta[2] } \,. \end{displaymath} Demanding that all such diagrams exist is therefore demanding that we have on 1-morphisms a composition operation with inverses in $K$. In order for this to qualify as an $\infty$-groupoid, this composition operation needs to satisfy an [[associativity law]] up to [[coherent]] [[2-morphisms]], which means that we can find the relevant [[tetrahedron]]s in $K$. These in turn need to be connected by \emph{pentagonators} and ever so on. It is a nontrivial but true and powerful fact, that all these [[coherence]] conditions are captured by generalizing the above conditions to all dimensions as in the definition of Kan complexes. In order to conceive of the $k$-[[simplices]] for higher $k$ as ``[[globular set|globular]] [[k-morphism]]'' going from a source to a target one needs a bit of combinatorics. This provided by the \emph{[[orientals]]} (due to [[Ross Street]]). The $k$-[[oriental]] $O(k)$ is precisely the prescription for how exactly to think of a $k$-[[simplex]] as being a [[k-morphism]] in an [[omega-category]]. The first few look like this: \begin{displaymath} \itexarray{\arrayopts{\rowalign{center}} O(\Delta^0) = & \{ 0\} \\ O(\Delta^1) = & \left\{ 0 \to 1\right\} \\ O(\Delta^2) = & \left\{ \itexarray{ } \right\}\\ O(\Delta^3) = & \left\{ \itexarray{ }\right\}\\ O(\Delta^4) = & \left\{ \itexarray{ } \right\} } \end{displaymath} In fact, the [[omega-nerve]] $N(K)$ of an [[omega-category]] $K$ is the [[simplicial set]] whose collection of $k$-cells $N(K)_k := Hom(O(k),K)$ is precisely the collection of images of the $k$th oriental $O(k)$ in $K$. This is fully formally the prescription of how to think of a Kan complex as an $\infty$-groupoid: the Kan complex $C$ is the [[omega-nerve]] of an [[omega-category]] in which all morphism are invertible: \begin{itemize}% \item the $k$-cells in $C_k$ are precisely the collection of $k$-morphisms ihn the omega-category of shape the $k$th [[oriental]] $O(k)$; \item the [[horn]]-filler conditions satisfied by these cells is precisely a reflection of the fact that \begin{enumerate}% \item there exists a notion of composition of adjacent k-morphisms in the [[omega-category]]; \item under this composition all $k$-morphisms have an inverse. \end{enumerate} \end{itemize} This is easy to see in low dimensions: \begin{itemize}% \item a 1-cell $\phi \in C_1$ in the [[simplicial set]] $C$ has a single source 0-cell $x := d_1 \phi$ and a single target 0-cell $y := d_0 \phi$ and hence may be pictured as a [[morphism]] \begin{displaymath} x \stackrel{\phi}{\to} y \,. \end{displaymath} \item a 2-cell $\phi \in C_2$ in the [[simplicial set]] $C$ has two incoming 1-cells $d_2 \phi, d_0 \phi \in C_1$ and one outgoing 1-cell $d_1 \phi \in C_1$, and if we think of the two incoming 1-cells as representing the composite of the corresponding 1-morphisms, we may picture te 2-cell $\phi$ here as a globular 2-morphism \begin{displaymath} \itexarray{ && x_1 \\ & {}^{\mathllap{d_2 \phi}}\nearrow &\Downarrow^\phi& \searrow^{\mathrlap{d_0 \phi}} \\ x_0 &&\underset{d_1 \phi}{\to}&& x_2 } \,. \end{displaymath} \end{itemize} More in detail, one may think of the incoming two adjacent $1$-cells here as \emph{not} being the composite of these two morphism, but just as a [[composable pair]], and should think of the existence of the 2-morphism $\phi$ here as being a \textbf{compositor} in a [[bicategory]] that shows how the composable pair is composed to the morphism $d_1 \phi$. So if an $\infty$-groupoid is thought of as a [[geometric shapes for higher structures|globular]] [[Batanin ∞-category| ∞-category]] in which all [[k-morphism]]s are invertible, then the corresponding Kan complex is the [[nerve]] or rather the [[∞-nerve]] of this [[∞-category]]. Notably if $C$ is to be regarded as (the nerve of) an ordinary [[groupoid]], every composable pair of morphisms has a unique composite, and hence there should be a \emph{unique} 2-cell \begin{displaymath} \itexarray{ && x_1 \\ & {}^{f}\nearrow &\Downarrow& \searrow^{g} \\ x_0 &&\underset{h = g \circ f}{\to}&& x_2 } \end{displaymath} that is the unique \textbf{identity 2-morphism} \begin{displaymath} g \circ f \stackrel{=}{\Rightarrow} h \,. \end{displaymath} More generally, in a [[2-groupoid]] there may be non-identity 2-morphisms, and hence for any 1-morphism $k _ x_0 \to x_2$ 2-isomorphic to $h$, there may be many 2-morphisms $g \circ f \Rightarrow k$, hence many 2-cells \begin{displaymath} \itexarray{ && x_1 \\ & {}^{f}\nearrow &\Downarrow^{\simeq}& \searrow^{g} \\ x_0 &&\underset{k }{\to}&& x_2 } \,. \end{displaymath} All we can say for sure is that \emph{at least} one such 2-cell exists, and that the 2-cells themselves may be composed in some way. This is precisely what the horn-filler conditions in a Kan complex encode. We have already seen in low dimension how the existence of composites in an $\omega$-category is reflected in the fact that in a Kan-complex certain 2-simplices exist, and how the non-uniqueness of these 2-simplices reflects the existence of nontrivial 2-morphisms. To see in a similar fashion that the Kan condition ensures the existence of \emph{inverses} consider an \emph{outer horn} in $C$, a diagram of 1-cells of the form \begin{displaymath} \itexarray{ && x_1 \\ & {}^{\mathllap{f}}\nearrow \\ x_0 &&\underset{h}{\to}&& x_2 } \,. \end{displaymath} In general given such a diagram in a [[category]], there is no guarantee that the corresponding triangle as above will exist in its [[nerve]]. But if the category is a [[groupoid]], then it is guaranteed that the missing 1-face can be chose to be the [[inverse]] of $f$ composed with the morphism $h$, and there is at least one 2-morphism \begin{displaymath} \itexarray{ && x_1 \\ & {}^{\mathllap{f}}\nearrow &\Downarrow^{\simeq}& \searrow^{\mathrlap{h \circ f^{-1}}} \\ x_0 &&\underset{h}{\to}&& x_2 } \,. \end{displaymath} A similar analysis for higher dimensional cells shows that the fact that a Kan complex has all horn fillers encodes precisely the fact that it is the [[omega-nerve]] of an [[omega-category]] in which \emph{all} [[k-morphism]]s for all $k$ are composable if adjacent and have a weak inverse. \hypertarget{1GroupoidsAsKanComplexes}{}\paragraph*{{1-Groupoids as Kan complexes}}\label{1GroupoidsAsKanComplexes} We review how [[1-groupoids]] are incarnated as Kan complexes via their [[nerve]]. For more along these lines see at \emph{[[geometry of physics -- homotopy types]]}. \begin{defn} \label{Groupoid}\hypertarget{Groupoid}{} A ([[small category|small]]) \emph{[[groupoid]]} $\mathcal{G}_\bullet$ is \begin{itemize}% \item a pair of [[sets]] $\mathcal{G}_0 \in Set$ (the set of [[objects]]) and $\mathcal{G}_1 \in Set$ (the set of [[morphisms]]) \item equipped with [[functions]] \begin{displaymath} \itexarray{ \mathcal{G}_1 \times_{\mathcal{G}_0} \mathcal{G}_1 &\stackrel{\circ}{\to}& \mathcal{G}_1 & \stackrel{\overset{t}{\to}}{\stackrel{\overset{i}{\leftarrow}}{\underset{s}{\to}}}& \mathcal{G}_0 }\,, \end{displaymath} where the [[fiber product]] on the left is that over $\mathcal{G}_1 \stackrel{t}{\to} \mathcal{G}_0 \stackrel{s}{\leftarrow} \mathcal{G}_1$, \end{itemize} such that \begin{itemize}% \item $i$ takes values in [[endomorphisms]]; \begin{displaymath} t \circ i = s \circ i = id_{\mathcal{G}_0}, \;\;\; \end{displaymath} \item $\circ$ defines a partial [[composition]] operation which is [[associativity|associative]] and [[unitality|unital]] for $i(\mathcal{G}_0)$ the [[identities]]; in particular $s (g \circ f) = s(f)$ and $t (g \circ f) = t(g)$; \item every morphism has an [[inverse]] under this composition. \end{itemize} \end{defn} \begin{defn} \label{NerveOfGroupoid}\hypertarget{NerveOfGroupoid}{} For $\mathcal{G}_\bullet$ a [[groupoid]], def. \ref{Groupoid}, its \emph{[[simplicial nerve]]} $N(\mathcal{G}_\bullet)_\bullet$ is the [[simplicial set]] with \begin{displaymath} N(\mathcal{G}_\bullet)_n \coloneqq \mathcal{G}_1^{\times_{\mathcal{G}_0}^n} \end{displaymath} the set of sequences of composable morphisms of length $n$, for $n \in \mathbb{N}$; with face maps \begin{displaymath} d_k \colon N(\mathcal{G}_\bullet)_{n+1} \to N(\mathcal{G}_\bullet)_{n} \end{displaymath} being, \begin{itemize}% \item for $n = 0$ the functions that remembers the $k$th object; \item for $n \geq 1$ \begin{itemize}% \item the two outer face maps $d_0$ and $d_n$ are given by forgetting the first and the last morphism in such a sequence, respectively; \item the $n-1$ inner face maps $d_{0 \lt k \lt n}$ are given by composing the $k$th morphism with the $k+1$st in the sequence. \end{itemize} \end{itemize} The degeneracy maps \begin{displaymath} s_k \colon N(\mathcal{G}_\bullet)n \to N(\mathcal{G}_\bullet)_{n+1} \,. \end{displaymath} are given by inserting an [[identity]] morphism on $x_k$. \end{defn} \begin{remark} \label{}\hypertarget{}{} Spelling this out in more detail: write \begin{displaymath} \mathcal{G}_n = \left\{ x_0 \stackrel{f_{0,1}}{\to} x_1 \stackrel{f_{1,2}}{\to} x_2 \stackrel{f_{2,3}}{\to} \cdots \stackrel{f_{n-1,n}}{\to} x_n \right\} \end{displaymath} for the set of sequences of $n$ composable morphisms. Given any element of this set and $0 \lt k \lt n$, write \begin{displaymath} f_{i-1,i+1} \coloneqq f_{i,i+1} \circ f_{i-1,i} \end{displaymath} for the comosition of the two morphism that share the $i$th vertex. With this, face map $d_k$ acts simply by ``removing the index $k$'': \begin{displaymath} d_0 \colon (x_0 \stackrel{f_{0,1}}{\to} x_1 \stackrel{f_{1,2}}{\to} x_{2} \cdots \stackrel{f_{n-1,n}}{\to} x_n ) \mapsto (x_1 \stackrel{f_{1,2}}{\to} x_{2} \cdots \stackrel{f_{n-1,n}}{\to} x_n ) \end{displaymath} \begin{displaymath} d_{0\lt k \lt n} \colon ( x_0 \cdots \stackrel{}{\to} x_{k-1} \stackrel{f_{k-1,k}}{\to} x_k \stackrel{f_{k,k+1}}{\to} x_{k+1} \stackrel{}{\to} \cdots x_n ) \mapsto ( x_0 \cdots \stackrel{}{\to} x_{k-1} \stackrel{f_{k-1,k+1}}{\to} x_{k+1} \stackrel{}{\to} \cdots x_n ) \end{displaymath} \begin{displaymath} d_n \colon ( x_0 \stackrel{f_{0,1}}{\to} \cdots \stackrel{f_{n-2,n-1}}{\to} x_{n-1} \stackrel{f_{n-1,n}}{\to} x_n ) \mapsto ( x_0 \stackrel{f_{0,1}}{\to} \cdots \stackrel{f_{n-2,n-1}}{\to} x_{n-1} ) \,. \end{displaymath} Similarly, writing \begin{displaymath} f_{k,k} \coloneqq id_{x_k} \end{displaymath} for the identity morphism on the object $x_k$, then the degenarcy map acts by ``repeating the $k$th index'' \begin{displaymath} s_k \colon ( x_0 \stackrel{}{\to} \cdots \to x_k \stackrel{f_{k,k+1}}{\to} x_{k+1} \to \cdots ) \mapsto ( x_0 \stackrel{}{\to} \cdots \to x_k \stackrel{f_{k,k}}{\to} x_k \stackrel{f_{k,k+1}}{\to} x_{k+1} \to \cdots ) \,. \end{displaymath} This makes it manifest that these functions organise into a [[simplicial set]]. \end{remark} \begin{prop} \label{}\hypertarget{}{} These collections of maps in def. \ref{NerveOfGroupoid} satisfy the [[simplicial identities]], hence make the [[nerve]] $\mathcal{G}_\bullet$ into a [[simplicial set]]. Moreover, this simplicial set is a Kan complex, where each [[horn]] has a \emph{unique} filler (extension to a [[simplex]]). \end{prop} (A 2-[[simplicial coskeleton|coskeletal]] Kan complex.) \begin{prop} \label{}\hypertarget{}{} The [[nerve]] operation constitutes a [[full and faithful functor]] \begin{displaymath} N \colon Grpd \to KanCplx \hookrightarrow sSet \,. \end{displaymath} \end{prop} \hypertarget{HomotopyTheoryOfKanComplexes}{}\paragraph*{{Homotopy theory of $\infty$-groupoids as Kan complexes}}\label{HomotopyTheoryOfKanComplexes} \begin{defn} \label{}\hypertarget{}{} Write \begin{displaymath} KanCplx \hookrightarrow sSet \end{displaymath} for the [[category]] of Kan complexes, which is the [[full subcategory]] of that of [[simplicial sets]] on the Kan complexes. \end{defn} \begin{remark} \label{}\hypertarget{}{} This means that for $X_\bullet,Y_\bullet \in KanCplx$ two Kan complexes, an element $f_\bullet \colon X_\bullet \to Y_\bullet$ in the [[hom-set]] $Hom_{KanCplx}(X_\bullet,Y_\bullet)$ is \begin{itemize}% \item a sequences of [[functions]] $f_n \colon X_n \to Y_n$ for all $n \in \mathbb{N}$; \end{itemize} such that \begin{itemize}% \item these respect all the face maps $d_k$ and the degeneracy maps $s_k$. \end{itemize} \end{remark} \begin{defn} \label{MappingObjectOfKanComplexes}\hypertarget{MappingObjectOfKanComplexes}{} For $X_\bullet,Y_\bullet \in KanCplx$ two Kan complexes, their [[mapping space]] \begin{displaymath} Maps(X_\bullet,Y_\bullet)_\bullet \in KanCplx \end{displaymath} is the [[simplicial set]] given by \begin{displaymath} Maps(X_\bullet,Y_\bullet) \colon [k] \mapsto Hom_{sSet}(X_\bullet \times \Delta^n_\bullet, Y_\bullet) \,. \end{displaymath} \end{defn} \begin{prop} \label{}\hypertarget{}{} The construction in def. \ref{MappingObjectOfKanComplexes} defines an [[internal hom]] of Kan complexes. \end{prop} \begin{remark} \label{}\hypertarget{}{} As such it is also common to write $Y^X$ for $Maps(X,Y)$, as well as $[X,Y]$. Notice that the latter notation is sometimes used instead for just the set of [[connected components]] of $Maps(X,Y)$. \end{remark} It follows that the category $KanCplx$ is naturally [[enriched category|enriched]] over itself. We now have the following immediate generalizations of the corresponding constructions seen above for 1-groupoids. \begin{example} \label{PathSpaceObjectOfKanComplexes}\hypertarget{PathSpaceObjectOfKanComplexes}{} Write \begin{displaymath} I_\bullet \coloneqq \{0 \stackrel{\simeq}{\to} 1\} \end{displaymath} for the Kan complex which is [[1-groupoid]] with two objects and one nontrivial morphism and its inverse between them. This comes with two inclusions \begin{displaymath} i_0, i_1 \colon \ast \to I \end{displaymath} of its endpoints. Then for $X_\bullet \in KanCplx$ any other Kan complex, the [[mapping space]] $[I,X]_\bullet$ from def. \ref{MappingObjectOfKanComplexes} is the [[path space object]] of $X_\bullet$. \begin{displaymath} X_\bullet \stackrel{[i_0,X_\bullet]}{\leftarrow} [I_\bullet,X_\bullet]_\bullet \stackrel{[i_1,X]}{\to} X_\bullet \,. \end{displaymath} \end{example} A 1-cell in the mapping Kan complex $[X_\bullet, Y_\bullet]_\bullet$ is a [[homotopy]] between two morphisms of Kan complexes: \begin{defn} \label{}\hypertarget{}{} For $f_\bullet, g_\bullet \colon X_\bullet \to Y_\bullet$ two morphisms between two Kan complexes, hence $f_\bullet,g_\bullet \in Hom_{KanCplx}(X,Y)$, a (right-)[[homotopy]] $\eta \colon f \Rightarrow g$ is a morphism $\eta_\bullet \colon X_\bullet \to [I_\bullet,X_\bullet]_\bullet$ into the [[path space object]] of def. \ref{PathSpaceObjectOfKanComplexes} such that we have a [[commuting diagram]] \begin{displaymath} \itexarray{ && Y_\bullet \\ & {}^{\mathllap{f_\bullet}}\nearrow & \uparrow^{\mathrlap{[i_0, X_\bullet]_\bullet}} \\ X_\bullet &\stackrel{\eta_\bullet}{\to}& [I_\bullet, Y_\bullet] \\ & {}_{\mathllap{g_\bullet}}\searrow & \downarrow_{\mathrlap{[i_1, X_\bullet]_\bullet}} \\ && Y \bullet } \,. \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} Hence a [[homotopy]] between two maps $X_\bullet \to Y_\bullet$ of Kan complexes is precisely a 1-cell in the [[mapping space]] $[X_\bullet, Y_\bullet]_\bullet$ of def. \ref{MappingObjectOfKanComplexes}. \end{remark} \begin{defn} \label{HomotopyEquivalenceOfKanComplexes}\hypertarget{HomotopyEquivalenceOfKanComplexes}{} We say that a map $X_\bullet \to Y_\bullet$ of [[Kan complexes]] is a \emph{[[homotopy equivalence]]} if it has a left and right [[inverse]] up to [[homotopy]], hence an ordinary inverse in $\pi_0[X_\bullet, Y_\bullet]$. \end{defn} \begin{example} \label{}\hypertarget{}{} For Kan complexes which are [[1-groupoids]] hence which are [[nerves]] of [[groupoids]], homotopy equivalence of Kan complexes is equivalently homotopy equivalence of these groupoids according to def. \ref{HomotopyEquivalenceOfGroupoids}. \end{example} \begin{defn} \label{KanComplexesAsHomotopyTypes}\hypertarget{KanComplexesAsHomotopyTypes}{} We may write [[∞Grpd]] for $KanCplx$ regarded as a $KanCplx$-[[enriched category]], hence as fibrant [[sSet-enriched category]]. We write $X$ (without the subscript) for a Kan complex $X_\bullet$ regarded as an object of $\infty Grpd$. As such, $X$ (or its [[equivalence class]]) is alse called a \emph{[[homotopy type]]}. The category [[∞Grpd]] itself ``is'' the canonical [[homotopy theory]]. (For more on this see also at \emph{[[homotopy hypothesis]]}.) \end{defn} The following is the immediate generalization of def. \ref{HomotopyFiberProductOfGroupoids}. \begin{defn} \label{HomotopyFiberProductOfKanComplexes}\hypertarget{HomotopyFiberProductOfKanComplexes}{} Given two morphisms of [[Kan complexes]] $X \stackrel{f}{\leftarrow} B \stackrel{g}{\to} Y$ their \emph{[[homotopy fiber product]]} \begin{displaymath} \itexarray{ X \underset{B}{\times} Y &\stackrel{}{\to}& X \\ \downarrow &\swArrow& \downarrow^{\mathrlap{f}} \\ Y &\underset{g}{\to}& B } \end{displaymath} is the [[limit]] [[cone]] \begin{displaymath} \itexarray{ X_\bullet \underset{B_\bullet}{\times} B^I_\bullet \underset{B_\bullet}{\times} Y_\bullet &\to& &\to& X_\bullet \\ \downarrow && && \downarrow^{\mathrlap{f_\bullet}} \\ && B^I_\bullet &\underset{(ev_0)_\bullet}{\to}& B_\bullet \\ \downarrow && \downarrow^{\mathrlap{(ev_1)_\bullet}} \\ Y_\bullet &\underset{g_\bullet}{\to}& B_\bullet } \,, \end{displaymath} hence the ordinary iterated [[fiber product]] over the [[path space]] Kan complex, as indicated. \end{defn} \hypertarget{DoldKanCorrespondenceInPrequantumFieldTheory}{}\paragraph*{{Higher phases: Homological algebra and abelian $\infty$-groups}}\label{DoldKanCorrespondenceInPrequantumFieldTheory} An important class of examples of [[∞-groupoids]] are those which are presented under the [[Dold-Kan correspondence]] by [[chain complexes]] of abelian groups. [[Dold-Kan correspondence]] \begin{defn} \label{}\hypertarget{}{} Write $Ch_{\bullet \geq 0}$ for the [[category of chain complexes]] (of [[abelian groups]] in non-negative degree). As usual, for $A \in$ [[Ab]] an [[abelian group]], we write $A[n]$ for the [[chain complex]] with $A$ in degree $n$ and 0 in all other degrees (the \emph{[[suspension of a chain complex]]}). \end{defn} \begin{defn} \label{}\hypertarget{}{} Write [[sAb]] for the category of [[simplicial abelian groups]], hence [[simplicial objects]] in [[abelian groups]]. Finally write \begin{displaymath} N \;\colon\; sAb \to Ch_\bullet \end{displaymath} for the [[normalized chain complex]]-functor, which sends a simplicial abelian group $A_\bullet$ to the chain complex whose $n$-[[chains]] are the non-degenerate elements of $A_n$ and whose [[differential]] is the alternating sum of the face maps of $A_\bullet$: \begin{displaymath} d^{N(A)} = \sum_{i = 0}^n (-1)^i d^A_i \,. \end{displaymath} \end{defn} Of relevance now are the following two standard facts. \begin{prop} \label{DoldKanAndMooreTheorem}\hypertarget{DoldKanAndMooreTheorem}{} \begin{enumerate}% \item [[Dold-Kan correspondence|Dold-Kan]]: The functor $N \colon Ch_{\bullet \geq 0} \to sAb$ is an [[equivalence of categories]]. The inverse functor \begin{displaymath} \Xi \colon Ch_{\bullet \geq 0} \stackrel{\simeq}{\to} sAb \end{displaymath} sends a chain complex to the simplicial abelian group whose $n$-simplices are the images of the [[normalized chain complex]] $N(\mathbb{Z}(\Delta^n))$ of chains $\mathbb{Z}(\Delta^n)$ the $n$-[[simplex]]. \item \href{simplicial+group#MooreTheorem}{Moore}: The [[forgetful functor]] $sAb \to sSet$ which sends a simplicial abelian group to its underlying simplicial set factors through Kan complexes \begin{displaymath} forget \; \colon \; sAb \to KanCplx \hookrightarrow sSet \,. \end{displaymath} \end{enumerate} \end{prop} Taken together, this provides us with the following very useful construction. \begin{defn} \label{DoldKanMap}\hypertarget{DoldKanMap}{} We write \begin{displaymath} DK \;\colon\; Ch_{\bullet \geq 0} \underoverset{\simeq}{\Xi}{\to} sAb \stackrel{forget}{\to} KanCplx \hookrightarrow sSet \end{displaymath} for the composite of the two functors of prop. \ref{DoldKanAndMooreTheorem}. \end{defn} We refer to this as the ``Dold-Kan map'', or say ``by Dold-Kan'', etc. It provides us with a rich supply of Kan complexes, hence of [[∞-groups]]. In fact, it embeds [[homological algebra]] into the [[homotopy theory]] of [[∞-groupoids]] in that it is a [[homotopical functor]]: \begin{prop} \label{DoldKanRespectsWeakEquivalences}\hypertarget{DoldKanRespectsWeakEquivalences}{} The Dold-Kan map of def. \ref{DoldKanMap} sends [[quasi-isomorphisms]] of [[chain complexes]] to [[homotopy equivalences]] of [[Kan complexes]], def. \ref{HomotopyEquivalenceOfKanComplexes}. \end{prop} Notably we have the following example \begin{defn} \label{}\hypertarget{}{} For $n \in \mathbb{N}$ write \begin{displaymath} \mathbf{B}^n \flat U(1) \coloneqq DK(\flat U(1)[n]) \in KanCplx \end{displaymath} for the $n$-fold [[suspension of a chain complex|suspension]] of the [[discrete group|discrete]] [[circle group]], regarded by Dold-Kan as the $n$-fold [[delooping]] Kan complex of $\flat U(1)$. \end{defn} \begin{example} \label{}\hypertarget{}{} Since the first [[simplex]] that contains a non-degenerate $n$-cell is $\Delta^n$, it follows that $\mathbf{B}^n\flat U(1)$ is trivial in degrees $\lt n$ \begin{displaymath} (\mathbf{B}^n \flat U(1))_{k \lt n} = \ast \,. \end{displaymath} Then since there is a unique non-degenerate $n$-cell in $\Delta^n$ we next have \begin{displaymath} (\mathbf{B}^n \flat U(1))_{n} = \flat U(1) \,. \end{displaymath} Next there are $(n+2)$ non-degenrate $n$-simplices in $\Delta^{n+1}$, but known $n+1$ of their images in $\flat U(1)$ determines the last one (as their oriented product), hence next \begin{displaymath} (\mathbf{B}^n \flat U(1))_{n+1} = (\flat U(1))^{\times^{n+1}} \,. \end{displaymath} Similarly for arbitary $k$ the set $(\mathbf{B}^n \flat U(1))_k$ is some [[Cartesian product|Cartesian power]] of $\flat U(1)$. But cince here we are mostly interested in $\mathbf{B}^n \flat U(1)$ as an [[n-groupoid]], hence only for mapping $n$-groupoids into it, it is mostly enough to just know its cells up to degree $(n+1)$. \end{example} Below in \emph{\hyperlink{HigherChern-SimonsLocalPrequantumFieldTheory}{Higher Chern-Simons theory}} the \emph{smooth} version of the [[circle group]] plays a role. In order to amplify that here we are just dealing with the [[discrete group]] underlying $U(1)$, we write \begin{displaymath} \flat U(1) \coloneqq U(1)_{disc} \end{displaymath} for it. \begin{displaymath} \mathbf{B}^n \flat U(1) \coloneqq DK([U(1)_{disc}[n]]) \,. \end{displaymath} \begin{prop} \label{}\hypertarget{}{} By the [[Dold-Kan correspondence]] each $\mathbf{B}^n \flat U(1)$ is naturally an [[∞-group]] and its [[delooping]] is indeed $\mathbf{B}^{n+1}\flat U(1)$ \begin{displaymath} \Omega \mathbf{B}^{n+1} \flat U(1) \simeq \mathbf{B}^n \flat U(1) \,. \end{displaymath} \end{prop} \hypertarget{local_dw_action_functionals_higher_group_cohomology}{}\paragraph*{{Local DW action functionals: Higher group cohomology}}\label{local_dw_action_functionals_higher_group_cohomology} \begin{prop} \label{GroupCohomologyByHomotopyClassesOfMaps}\hypertarget{GroupCohomologyByHomotopyClassesOfMaps}{} For $G$ a [[discrete group]] and $A$ a discrete [[abelian group]], there is a natural isomorphism \begin{displaymath} H_{Grp}^n(G,A) \simeq \pi_0 Grpd_\infty(\mathbf{B}G, \mathbf{B}^n A) \end{displaymath} between the degree-$n$ [[group cohomology]] of $G$ with [[coefficients]] in $A$ and the connected components of maps of [[∞-groupoids]] from the [[delooping]] of $G$ to the $n$-fold [[delooping]] of $A$. \end{prop} This means that local action functionals for higher Dijkgraaf-Witten type theories, hence maps of $\infty$-groupoids of the form $\exp(i S_{DW}^n) \colon \mathbf{B} \flat G \to \mathbf{B}^n \flat U(1)$ are equivalently [[cocycles]] $[c] \in H^n_{Grp}(\flat G,\flat U(1))$ in degree-$n$ [[group cohomology]]: \begin{displaymath} \exp(i S_{DW}^n) = \mathbf{B}c \,. \end{displaymath} In particular the original 3d [[Dijkgraaf-Witten theory]] appears this way as the theory of a group 3-cocycle. (\ldots{}) \hypertarget{HigherChern-SimonsLocalPrequantumFieldTheoryLevels}{}\subsubsection*{{Higher Chern-Simons local prequantum field theory -- Levels}}\label{HigherChern-SimonsLocalPrequantumFieldTheoryLevels} Let $G \in Grp(\mathbf{H})$ be a simply connected compact simple Lie group. and write $\mathbf{B}G \in Smooth\infty Grpd$ for its [[delooping]] stack. By the discussion at \emph{[[Lie group cohomology]]} there is a bijection \begin{displaymath} H^n_{Grp}(G,\mathbb{Z}) \simeq \{\mathbf{B}G \to \mathbf{B}^n \mathbb{Z}\}_\sim \,. \end{displaymath} Write \begin{displaymath} \mathbf{c}_2 \colon \mathbf{B}G\longrightarrow B^4 \mathbb{Z} \end{displaymath} for a representative of the [[second Chern class]] under this bijection. We may regard this map as a [[local Lagrangian]], hence as an object \begin{displaymath} \mathbf{c}_2 \in Corr_3(\mathbf{H}_{/B^4 \mathbb{Z}})^{\otimes_{phased}} \end{displaymath} in the [[(∞,n)-category of correspondences]] in the [[slice (∞,1)-topos]] $\mathbf{H}_{/B^4 \mathbb{Z}}$ equipped with the [[phased tensor product]]. Since $Corr_3(\mathbf{H}_{/B^4 \mathbb{Z}})^{\otimes_{phased}}$ is an [[(∞,n)-category with duals]], this defines a framed-topological [[local prequantum field theory]] \begin{displaymath} \mathbf{c}_2 \colon (Bord_n^{fr})^\sqcup \longrightarrow Corr_3(\mathbf{H}_{/B^4 \mathbb{Z}})^{\otimes_{phased}} \end{displaymath} This sends a closed manifold $\Sigma$ of dimension 2 (a [[surface]]) to the class of a [[line bundle]] \begin{displaymath} \mathbf{Loc}_G(\Sigma) \longrightarrow B^2 \mathbb{Z} \end{displaymath} on the [[moduli stack of flat connections]] (``[[local systems]]'') of $\Sigma$, which is the [[phase space]] of $G$-[[Chern-Simons theory]]. By the discussion at \emph{[[cobordism hypothesis]]} (\href{cobordism+hypothesis#UnorientedLocalPrequantumFieldTheory}{this corollary} in view of \href{cobordism+hypothesis#CanonicalSOActionOnBnZ}{this proposition}) an extension of this to an oriented-topological local preqauntum field theory is equivalent to \begin{enumerate}% \item choices of $SO(3)$-[[∞-actions]] on $\mathbf{B}G$; \item choices of [[equivariant cohomology|equivariant]] extensions \begin{displaymath} \itexarray{ \mathbf{B}G &\stackrel{\mathbf{c}_2}{\longrightarrow}& B^4 \mathbb{Z} \\ \downarrow & \nearrow_{\mathrlap{\mathbf{c}_2//SO(3)}} \\ (\mathbf{B}G)//SO(3) } \,. \end{displaymath} \end{enumerate} There are in general not too many $SO(3)$-[[∞-action]] on $\mathbf{B}G$, so consider the trivial one. Then \begin{displaymath} (\mathbf{B}G)//SO(3) \simeq (\mathbf{B}G)\times (B SO(3)) \end{displaymath} and an equivariant extension is given by a map \begin{displaymath} B SO(3) \longrightarrow B^4 \mathbb{Z} \end{displaymath} hence an element in $H^4(B SO(3), \mathbb{Z})$. This is essentially given by the first [[Pontryagin class]] $p_1$. Hence it follows that the extension of $\mathbf{c}_2$-Chern-Simons local prequantum fields theory (on the level of levels) to oriented cobordisms is given by \begin{displaymath} (c_2 + p_1) \colon (\mathbf{B}G) \times (B SO(3)) \longrightarrow B^4 \mathbb{Z} \,. \end{displaymath} The moduli space of fields that this assigns to an oriented manifold $\Sigma$ is the space of maps \begin{displaymath} \itexarray{ \Pi(\Sigma) && \longrightarrow && (\mathbf{B}G)\times (B SO(3)) \\ & {}_{\mathllap{T \Sigma \oplus \mathbb{R}^{3-dim(\Sigma)}}}\searrow && \swarrow \\ & B SO(3) } \,. \end{displaymath} Hence in codimension-0 this is still just $\mathbf{Loc}_G(\Sigma)$. In order to trivialize the $p_1$-contribution appearing here, consider the [[homotopy fiber sequence]] \begin{displaymath} \itexarray{ B^3 \mathbb{Z} &\longrightarrow& B^3 \mathbb{Z}//SO(3) \\ && \downarrow \\ && B SO(3) &\stackrel{p_1}{\longrightarrow}& } \end{displaymath} exhibiting an $SO(3)$-[[∞-action]] on $B^3 \mathbb{Z}$. Then there is an oriented-topological local prequantum field theory with equivariant local Lagrangian \begin{displaymath} (c_2 + p_1) \colon (\mathbf{B}G) \times (B^3 \mathbb{Z}//SO(3)) \longrightarrow B^4 \mathbb{Z} \end{displaymath} given by the total composite in the diagram \begin{displaymath} \itexarray{ (\mathbf{B}G) \times (B^3 \mathbb{Z}//SO(3)) &\longrightarrow& (B^3 \mathbb{Z}) \\ \downarrow && \downarrow \\ (\mathbf{B}G)\times B SO(3) &\stackrel{(c_2,p_1)}{\longrightarrow}& (B^4 \mathbb{Z}, B^4 \mathbb{Z}) \\ && & \searrow^{\mathrlap{+}} \\ && && B^4 \mathbb{Z} } \,. \end{displaymath} The moduli spaces of fields of this oriented theory on $\Sigma$ now are \begin{displaymath} \Sigma \mapsto \mathbf{Loc}_G(\Sigma) \times p_1Struct(\Sigma) \end{displaymath} with 3-stabilized $p_1$-structures as in \emph{[[Atiyah 2-framing]]}. A further variant of this is given by the model for the [[supergravity C-field]] \begin{displaymath} \itexarray{ \mathbf{CField} &\longrightarrow& (B^3 \mathbb{Z}) \\ \downarrow &\searrow& \downarrow \\ (\mathbf{B}G)\times B SO(3) &\stackrel{(c_2,p_1)}{\longrightarrow}& B^4 \mathbb{Z} } \,. \end{displaymath} (\ldots{}) \hypertarget{HigherChern-SimonsLocalPrequantumFieldTheory}{}\subsubsection*{{Higher Chern-Simons local prequantum field theory}}\label{HigherChern-SimonsLocalPrequantumFieldTheory} By def. \ref{LocalPrequantumFieldWithAction}, a local prequantum [[bulk]] field theory in dimension $(n+1)$ is equivalently a morphism of the form \begin{displaymath} \exp(i S) \colon \mathbf{Fields} \to \flat \mathbf{B}^{n+1}U(1) \,, \end{displaymath} for any object $\mathbf{Fields} \in \mathbf{H}$. First we now observe in \begin{itemize}% \item \emph{\hyperlink{TopologicalYangMillsLocalPrequantumFieldTheory}{Universal topological Yang-Mills theory}} \end{itemize} that there is a fairly canonical such morphism $S^{n+1}_{tYM}$, namely the ``[[atlas]] relative to [[manifolds]]'' of $\flat \mathbf{B}^{n+1}U(1)$ given by the [[sheaf]] of [[differential forms|closed differential (n+1)-forms]]. Analyzing what this morphism is like, when regarded as a local prequantum field theory by def. \ref{LocalPrequantumFieldWithAction}, shows that it is the ``universal'' higher [[topological Yang-Mills theory|topological Yang-Mills]] prequantum field theory. What this means becomes clear when we analyze the possible [[boundary field theories]] of this theory. \begin{itemize}% \item \emph{\hyperlink{UniversalStYMBoundaryAndDifferentialCohomology}{Universal boundary condition for $S_{tYM}$: Differential cohomology and Cheeger-Simons field theory}} \item \hyperlink{GenralBoundaryForStYMAndHigherChernSimons}{General boundary conditions: Higher Chern-Weil theory and $\infty$-Chern-Simons theory} \end{itemize} where we discuss how the boundary theories for $S^{n+1}_{tYM}$ are precisely the prequantum field theories of higher [[Chern-Simons theory]]-type, the \emph{[[schreiber:∞-Chern-Simons theories]]}. These include ordinary 3d [[Chern-Simons theory]], [[higher dimensional Chern-Simons theory]] on ordinary [[gauge fields]] but also higher Chern-Simons theory on [[higher gauge fields]] such as the [[String 2-group]] [[7-dimensional Chern-Simons theory]], the [[AKSZ sigma-models]], and also [[closed string field theory]]. This shows how $\infty$-Chern-Simons theories arise canonically as precisely the local [[boundary field theories]] of the canonical local field theory which exists in any [[differential cohesion|differential]] [[cohesion|cohesive]] [[(∞,1)-topos]]. Continuing in this vein we can then work out what all the further higher [[codimension]] [[boundary field theories]] and [[defect field theories]] of this universal higher [[topological Yang-Mills theory]] and hence of [[schreiber:∞-Chern-Simons theories]] are. We find \begin{itemize}% \item \emph{\href{}{Topological Chern-Simons boundaries}} \end{itemize} which are given by generalized ``[[Bohr-Sommerfeld leaf|Bohr-Sommerfeld]] [[isotropic subspaces]]'' of the [[moduli stacks]] of $\infty$-Chern-Simons fields. Then\ldots{} (\ldots{}) \hypertarget{TopologicalYangMillsLocalPrequantumFieldTheory}{}\paragraph*{{$d = n + 1$, Universal topological Yang-Mills theory $S_{tYM}$}}\label{TopologicalYangMillsLocalPrequantumFieldTheory} There is a special and especially simple map to the [[coefficient]] object $\flat \mathbf{B}^{n+1} U(1)$ for flat [[local action functionals]]/[[prequantum n-bundles]], namely the map \begin{displaymath} \itexarray{ \Omega^{n+1}_{cl} \\ \downarrow^{\mathrlap{\exp(i S_{tYM})}} \\ \mathbf{B}^{n+1} \flat U(1) } \end{displaymath} which in components is the inclusion of closed [[differential forms]] into [[de Rham cohomology|de Rham]] [[hypercohomology]] cocoycles. We here introduce and describe this map and then regard it as a [[local action functional]] of a local prequantum field theory according to def. \ref{LocalPrequantumFieldWithAction}. Below in \emph{\hyperlink{HigherChernSimonsPrequantumFieldTheory}{Higher Chern-Simons prequantum field theory}} we find that this field theory is such that close to its boundaries it looks like (higher) [[topological Yang-Mills theory]] for every possible higher gauge group and every possible [[invariant polynomial]] on it, as one considers every possible [[boundary condition]]. Therefore we here refer to this as the ``universal topological Yang-Mills theory''. \hypertarget{smooth_moduli_stacks_of_fields_smooth_groupoids}{}\paragraph*{{Smooth moduli stacks of fields: Smooth $\infty$-groupoids}}\label{smooth_moduli_stacks_of_fields_smooth_groupoids} The notion of a [[sheaf]] of [[chain complexes]] or equivalently of a chain complex of sheaves over a fixed [[topological space]] has a long tradition in [[homological algebra]]. Many sheaves however are naturally considered not on one fixed space, but on ``all of them''. For instance [[differential forms]] in any degree may be ``[[pullback of a differential form|pulled back]]'' along any [[smooth function]] between [[smooth manifolds]]. Accordingly if we regard the whole category [[SmoothMfd]] of smooth manifolds as a replacement for and generalization of the [[category of open subsets]] of any given one, then differential forms constitute a sheaf on that [[site]], hence a functor \begin{displaymath} \Omega^{n} \colon SmoothMfd^{op} \to Set \,. \end{displaymath} In particular for $n = 0$ this is just the sheaf of smooth functions \begin{displaymath} \underline{\mathbb{R}} = C^\infty(-,\mathbb{R}) \colon SmoothMfd^{op} \to Set \,. \end{displaymath} One way to think of this is that this sheaf \emph{is} the [[real line]] $\mathbb{R}$ first of all as a [[set]] -- which is the value of $\underline{\mathbb{R}}$ on the [[point]] $\ast$ -- and secondly equipped with its canonical [[smooth structure]] which is encoded by the system of \emph{all} sets $C^\infty(X,\mathbb{R})$ of smooth functions from any smooth manifold $X$, and the information $C^\infty(\phi, \mathbb{R}) \colon C^\infty(Y, \mathbb{R}) \to C^\infty(X,\mathbb{R})$ of how these functions pull back (precompose) along any smooth function of test manifolds $\phi \colon X \to Y$. Regarding the [[smooth manifold]] $\mathbb{R}$ this way means regarding it as what is sometimes called a [[diffeological space]], and what here more generally call a \emph{[[smooth space]]}. Therefore we will often just write $\mathbb{R}$ when we really mean the sheaf $\underline{\mathbb{R}}$ [[representable functor|represented]] by it. The [[Dold-Kan correspondence|Dold-Kan map]] of def. \ref{DoldKanMap} directly extends to ([[presheaf|pre]]-)[[sheaves]] which regard a (pre-)sheaf of chain complexes as a presheaf of [[Kan complexes]] \begin{displaymath} DK \;\colon\; pSh(SmoothMfd, Ch_\bullet) \stackrel{}{\to} pSh(SmoothMfd, KanCplx) \hookrightarrow pSh(SmoothMfd, sSet) \,. \end{displaymath} By the previous reasoning, a presheaf of Kan complexes on the category of smooth manifolds, we may think of as being a plain Kan complex, hence [[∞-groupoid]] (the value of the presheaf on the point), together with a rule for what the smooth functions into it are, for each smooth testmanifold. Hence we think of it as a \emph{[[smooth ∞-groupoid]]}. A basic example is a [[Lie groupoid]] $\mathcal{G}_\bullet \in Grpd(SmoothMfd)$, which represents a presheaf of Kan complexes on smooth manifolds by \begin{displaymath} U \mapsto N( C^\infty(U,\mathcal{G}_1) \stackrel{\to}{\to} C^\infty(U,\mathcal{G}_0) ) \,. \end{displaymath} Previously we have considered higher Dijkgraaf-Witten as taking place in the [[homotopy theory]] of plain [[∞-groupoids]] (geometrically [[discrete ∞-groupoids]]). Now we would like to have ``a [[homotopy theory]] of [[smooth ∞-groupoids]]''. (A modern term for ``a [[homotopy theory]]'' is ``an [[(∞,1)-category]]'', but for a heuristic idea of what is going on some readers may find it helpful to think of ``a homotopy theory'' instead.) In order to define ``a [[homotopy theory]]'' of [[smooth ∞-groupoids]] is, to be denoted [[Smooth∞Grpd]], we need to say what a [[homotopy]] and hence what a [[homotopy equivalence]] is supposed to be. Since [[smooth structure]] should be a local property witnessed on small smooth [[open balls]], we declare that \begin{displaymath} Smooth\infty Grpd \coloneqq L_{lhe} \; pSh(SmoothMfd, KanCplx) \end{displaymath} is the [[homotopy theory]] obtained by ``universally turning [[stalk]]-wise [[homotopy equivalences]] of [[Kan complexes]], def. \ref{spring}, into actual homotopy equivalences''. The formal definition of this idea is called the \emph{[[simplicial localization]]} of $pSh(SmoothMfd, KanCplx)$ at the stalkwise homotopy equivalences. We call [[∞Grpd]] also the \emph{[[differential cohesion|differential]] [[cohesive]] [[∞-topos]] of [[smooth ∞-groupoids]]}. For brevity and since most everything we discuss in the following holds for arbitrary \emph{[[differential cohesion|differential]] [[cohesive]] [[(∞,1)-toposes]], we from now on denote it by} \begin{displaymath} \mathbf{H} \coloneqq Smooth \infty Grpd \,. \end{displaymath} We now immediately turn to a simple example that illustrates some basic aspects of this construction. \hypertarget{the_canonical_local_action_functional_differential_forms_in_de_rham_hypercohomology}{}\paragraph*{{The canonical local action functional: Differential forms in de Rham hypercohomology}}\label{the_canonical_local_action_functional_differential_forms_in_de_rham_hypercohomology} As a first example for how to work in the homotopy theory of [[smooth ∞-groupoids]] we have the following. \begin{prop} \label{}\hypertarget{}{} The canonical [[chain map]] \begin{displaymath} \itexarray{ \flat U(1) &\to& 0 &\to& 0 &\to& \cdots &\to& 0 \\ \downarrow && \downarrow && \downarrow && \cdots && \downarrow \\ C^\infty(-,U(1)) &\stackrel{d log}{\to}& \Omega^1 &\stackrel{d}{\to}& \Omega^2 &\stackrel{d}{\to}& \cdots &\to& \Omega^n_{cl} } \,, \end{displaymath} where the left map includes the sheaf of (locally) constant $U(1)$-valued functions into that of all $U(1)$-valued smooth functions, is a [[stalk]]-wise [[quasi-isomorphism]]. Hence under the [[Dold-Kan correspondence]], def. \ref{DoldKanMap}, both present the same [[smooth ∞-groupoid]] \begin{displaymath} \flat \mathbf{B}^n U(1) \simeq \mathbf{B}^n \flat U(1) \in Smooth\infty Grpd \,. \end{displaymath} \end{prop} \begin{proof} By definition and using prop. \ref{DoldKanRespectsWeakEquivalences} we need to check that over a small enough smooth open ball, the [[chain map]] becomes a [[quasi-isomorphism]]. But on an open ball this is the statement of the [[Poincaré lemma]]. \end{proof} Accordingly we have a canonical inclusion: \begin{defn} \label{ClosedFormsInDeRhamCoefficients}\hypertarget{ClosedFormsInDeRhamCoefficients}{} For $n \in \mathbb{N}$, write \begin{displaymath} \Omega^{n}_{cl} \in SmoothSpace \hookrightarrow Smooth \infty Grpd \end{displaymath} for the [[sheaf]] of closed smooth [[differential forms]] of degree $n$, regarded as a [[smooth space]], regarded as a [[smooth ∞-groupoid]]. Write \begin{displaymath} \Omega^{n}_{cl} \to \flat \mathbf{B}^n U(1) \end{displaymath} for the image in morphisms of [[Smooth∞Grpd]] under the [[Dold-Kan correspondence]], def. \ref{DoldKanMap}, of the [[chain map]] \begin{displaymath} \itexarray{ 0 &\to& 0 &\to& 0 &\to& \cdots &\to& \Omega^{n}_{cl} \\ \downarrow && \downarrow && \downarrow && \cdots && \downarrow^{\mathrlap{id}} \\ C^\infty(-,U(1)) &\stackrel{d log}{\to}& \Omega^1 &\stackrel{d}{\to}& \Omega^2 &\stackrel{d}{\to}& \cdots &\to& \Omega^n_{cl} } \,, \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} The map $\Omega^n_{cl} \to \flat \mathbf{B}^n U(1)$ in def. \ref{ClosedFormsInDeRhamCoefficients} may be characterized more abstractly as follows: for every [[smooth manifold]] $\Sigma$, theinduced morphism of [[mapping spaces]] \begin{displaymath} [\Sigma, \Omega^n_{cl}] \to [\Sigma, \flat \mathbf{B}^n U(1)] \end{displaymath} is a [[1-epimorphism]], hence a [[stalk]]-wise [[epimorphism]] on [[connected components]]. \end{remark} \begin{defn} \label{GeneralHighertYM}\hypertarget{GeneralHighertYM}{} By def. \ref{LocalPrequantumFieldWithAction} we may now regard the map \begin{displaymath} \itexarray{ \Omega^{n+1}_{cl} \\ \downarrow^{\mathrlap{\exp(i S_{tYM})}} \\ \mathbf{B}^{n+1} \flat U(1) } \end{displaymath} of prop. \ref{ClosedFormsInDeRhamCoefficients} as a local action functional for an $(n+1)$-dimensional local prequantum field theory. We call this the ``universal higher [[topological Yang-Mills theory]]'' for reasons that become clear as we anaylize its [[boundary field theories]] now. \end{defn} \hypertarget{HigherChernSimonsPrequantumFieldTheory}{}\paragraph*{{$d = n + 0$, Higher Chern-Simons field theories}}\label{HigherChernSimonsPrequantumFieldTheory} We consider now the [[boundary field theories]] for the ``universal topological Yang-Mills theory'' of def. \ref{GeneralHighertYM}. \hypertarget{UniversalStYMBoundaryAndDifferentialCohomology}{}\paragraph*{{Universal boundary condition for $S_{tYM}$: Differential cohomology and Cheeger-Simons field theory}}\label{UniversalStYMBoundaryAndDifferentialCohomology} Where the plain [[(∞,n)-category of cobordisms]] $Bord_n$ is freely generated from the point $\ast$ alone, so the $(\infty,n)$-category of cobordisms with possibly a marked boundary is freely generated from the point and one new morphism \begin{displaymath} \emptyset \to \ast \end{displaymath} which we think of as being the interval $D^1$ with one end ``marked''. Now a local field theory with local action functional according to def. \ref{LocalPrequantumFieldWithAction} encodes not only the value on the point, which we now take to be \begin{displaymath} \exp(i S) \colon \ast \mapsto \left[ \itexarray{ \Omega^{n+1}_{cl} \\ \downarrow^{\mathrlap{\exp(i S_{tYM})}} \\ \mathbf{B}^{n+1} \flat U(1) } \right] \,, \end{displaymath} but moreover one morphism in $Span_n(\mathbf{H}, \mathbf{B}^{n+1}\flat U(1))$ from the trivial field configuration with trivial action to this data, hence (as amplified in \hyperlink{FiorenzaValentino}{FV}) a diagram in $\mathbf{H}$ of the form \begin{displaymath} \itexarray{ && \mathbf{Fields}^{\partial} \\ & \swarrow && \searrow \\ \ast && \swArrow && \Omega^{n+1}_{cl} \\ & \searrow && \swarrow \\ && \mathbf{B}^{n+1}\flat U(1) } \,. \end{displaymath} Therefore defining such boundary data means defining a [[moduli stack]] $\mathbf{Fields}^{\partial}$ of boundary field configurations, together with a [[homotopy]] filling the above diagram which encodes the relative action functional on this boundary data. In order to find all possible such boundary data for $\exp(i S_{tYM})$, we can make use of the [[homotopy fiber product]] construction of def. \ref{HomotopyFiberProductOfKanComplexes} to find the \emph{universal} such boundary data, the one through which any other one factors. \begin{prop} \label{DiffCohomologyIsTerminalBoundaryForStYM}\hypertarget{DiffCohomologyIsTerminalBoundaryForStYM}{} The universal boudnary condition for $\exp(i S_{tYM})$, hence the [[homotopy fiber product]] $\ast \underset{\mathbf{B}^{n+1}\flat U(1)}{\times} \Omega^{n+1}_{cl}$, is given by the image under the [[Dold-Kan correspondence|Dold-Kan map]], def. \ref{DoldKanMap}, of the [[Deligne complex]] \begin{displaymath} \mathbf{B}^n U(1)_{conn} \coloneqq DK( \underline{U}(1) \stackrel{d log}{\to} \Omega^1 \stackrel{d}{\to} \cdots \to \Omega^{n-1} \stackrel{d}{\to} \Omega^n ) \,, \end{displaymath} hence the universal boundary data is \begin{displaymath} \itexarray{ && \mathbf{B}^n U(1)_{conn} \\ & \swarrow && \searrow^{\mathrlap{F_{(-)}}} \\ \ast && \swArrow && \Omega^{n+1}_{cl} \\ & \searrow && \swarrow \\ && \mathbf{B}^{n+1}\flat U(1) } \,. \end{displaymath} \end{prop} The [[boundary field theory]] defined this way we may call \emph{[[Cheeger-Simons differential character|Cheeger-Simons field theory]]}. \hypertarget{GenralBoundaryForStYMAndHigherChernSimons}{}\paragraph*{{General boundary condition for $S_{tYM}$: Higher Chern-Weil theory and $\infty$-Chern-Simons theory}}\label{GenralBoundaryForStYMAndHigherChernSimons} By the [[universal property]] of the [[homotopy fiber product]] we then have the following statement. \begin{prop} \label{HigherCSAsBoundaryTheory}\hypertarget{HigherCSAsBoundaryTheory}{} Boundary field theories for $\exp(i S_{tYM})$ are equivalently [[moduli stacks]] $\mathbf{Fields} \in \mathbf{H}$ equipped with maps \begin{displaymath} \exp(i S_{CS}) \colon \mathbf{Fields} \to \mathbf{B}^n U(1)_{conn} \end{displaymath} hence equipped with a [[circle n-bundle with connection]] (the [[prequantum n-bundle]] of the boundary theory). \end{prop} Moreover, the universal property of the [[Cheeger-Simons differential character|Cheeger-Simons]] field theory identifies all these boundary theories as being of higher Chern-Simons type, in that they have a [[curvature]] associated to them which is an invariant differential form ([[invariant polynomial]]) on the moduli stack \begin{displaymath} \itexarray{ \mathbf{Fields} \\ {}^{\mathllap{\exp(i S_{CS})}}\downarrow & \searrow^{\mathrlap{\langle F_{(-)} \wedge \cdots F_{(-)}\rangle}} \\ \mathbf{B}^n U(1)_{conn} &\underset{F_{(-)}}{\to}& \Omega^{n+1}_{cl} } \,. \end{displaymath} We call these theories of [[schreiber:∞-Chern-Simons theory]]-type. \begin{example} \label{}\hypertarget{}{} For $G$ a simply connected simple Lie group and \begin{displaymath} \mathbf{B}G_{conn} \coloneqq \Omega^1(-,\mathfrak{g})//G \end{displaymath} the [[moduli stack]] of $G$-[[principal connections]], the local action functional of ordinary 3d [[Chern-Simons theory]] is of the form \begin{displaymath} \mathbf{B}G_{conn} \to \mathbf{B}^3 U(1)_{conn} \,. \end{displaymath} This [[prequantum n-bundle|prequantum 3-bundle]] is the \emph{[[Chern-Simons circle 3-bundle]]}. \end{example} Many more examples\ldots{} e.g. [[7d Chern-Simons theory]], [[AKSZ sigma-model]], etc\ldots{}. \hypertarget{geometric_defects_for__from_chernsimons_invariants_higher_holonomy_parallel_transport_fiber_integration_in_differential_cohomology}{}\paragraph*{{Geometric defects for $S_{tYM}$ from Chern-Simons invariants: Higher holonomy, parallel transport, fiber integration in differential cohomology}}\label{geometric_defects_for__from_chernsimons_invariants_higher_holonomy_parallel_transport_fiber_integration_in_differential_cohomology} While we may think of the [[(∞,n)-category of cobordisms]] $Bord_n$ as built from [[smooth manifolds]], the [[cobordism theorem]] clearly states that these just serve as a presentation of a structure that is not intrinsically related to smooth or even topological structure. This is made manifest by prop. \ref{ValueOfLocalPrequantumFieldTheoryOnCobordism}: the value of a local prequantum field theory on a [[k-morphism]] in $Bord_n$ depends only on the [[homotopy type]] of the $k$-dimensional manifold that presents this $k$-morphism. Of course this is precisely the property that the term ``topological'' in \emph{[[topological field theory]]} is referring to. But boundaries and defects of a topological field theory may add extra structure to the theory which is not ``purely topological'' in this way. Here we consider a canonical class of defects for universal higher topological Yang-Mills theory, def. \ref{GeneralHighertYM}, and $\infty$-Chern-Simons theory, def. \ref{HigherCSAsBoundaryTheory}, which implements the expected [[higher parallel transport]]/[[higher holonomy]] of the higher Chern-Simons type action functionals over actual [[smooth manifolds]]. \begin{prop} \label{FiberIntegrationInDiffCohomologyAsDiagram}\hypertarget{FiberIntegrationInDiffCohomologyAsDiagram}{} For $k \leq n$ and for $\Sigma_k$ and [[orientation|oriented]] [[closed manifold]], there is a morphism of smooth moduli stacks \begin{displaymath} \exp(i \int_{\Sigma_k}(-)) \colon [\Sigma_k, \mathbf{B}^n U(1)_{conn}] \to \mathbf{B}^{n-k}U(1)_{conn} \end{displaymath} which is compatible with the standard [[fiber integration|fiber]] [[integration of differential forms]] and with [[transgression]] in [[ordinary cohomology]] in that it fits into a commuting diagram \begin{displaymath} \itexarray{ [\Sigma_k, \flat \mathbf{B}^n U(1)] &\stackrel{}{\to}& \flat \mathbf{B}^n U(1) \\ \downarrow && \downarrow \\ [\Sigma_k, \mathbf{B}^n U(1)_{conn}] &\stackrel{\exp(i \int_{\Sigma_k}(-) )}{\to}& \mathbf{B}^{n-k} U(1)_{conn} \\ \downarrow && \downarrow \\ [\Sigma_k, \Omega^{n+1}_{cl}] &\stackrel{\int_{\Sigma_k}}{\to}& \Omega^{n-k+1}_{cl} } \,. \end{displaymath} More generally, if $\Sigma_k$ is a [[manifold with boundary]] then there is a diagram \begin{displaymath} \itexarray{ && [\Sigma_k, \mathbf{B}^n U(1)_{conn}] \\ & {}^{\mathllap{(-)|_{\partial \Sigma}}}\swarrow && \searrow^{\mathrlap{\omega_\Sigma}} \\ [\partial \Sigma_k, \mathbf{B}^n U(1)_{conn}] && \swArrow_{\exp(2 \pi i \int_{\Sigma})} && \Omega^{n-k+1} \\ & {}_{\mathllap{\exp(2 \pi i \int_{\partial \Sigma}(-))}}\searrow && \swarrow \\ && \mathbf{B}^{n-k+1}U(1)_{conn} } \,, \end{displaymath} where the bottom left map is the fiber integration from before, applied to the closed boundary, and where the [[homotopy]] filling the diagram is such that it reproduces this fiber integration in the case that the boundary is empty, in that \begin{displaymath} \itexarray{ && [\Sigma_k, \mathbf{B}^n U(1)_{conn}] \\ & {}^{\mathllap{(-)|_{\partial \Sigma}}}\swarrow && \searrow^{\mathrlap{\omega_\Sigma}} \\ [\emptyset, \mathbf{B}^n U(1)_{conn}] && \swArrow_{\exp(2 \pi i \int_{\Sigma})} && \Omega^{n-k+1} \\ & {}_{\exp(2 \pi i \int_{\emptyset}(-))}\searrow && \swarrow \\ && \mathbf{B}^{n-k+1}U(1)_{conn} } \;\;\; \simeq \;\;\; \itexarray{ && [\Sigma_k, \mathbf{B}^n U(1)_{conn}] \\ && \downarrow \\ && \mathbf{B}^{n-k}U(1)_{conn} \\ & {}^{\mathllap{(-)|_{\partial \Sigma}}}\swarrow && \searrow^{\mathrlal{\omega_\Sigma}} \\ \ast && \swArrow_{\exp(2 \pi i \int_{\Sigma})} && \Omega^{n-k+1} \\ & {}_{}\searrow && \swarrow \\ && \mathbf{B}^{n-k+1}U(1)_{conn} } \,, \end{displaymath} \end{prop} \begin{proof} This follows by unwinding the traditional formulas for [[fiber integration in differential cohomology]], reformulating them in [[homotopy theory]] and observing that they are natural in their arguments, hence extend to morphisms of higher stacks, as discussed here. \end{proof} \begin{remark} \label{}\hypertarget{}{} A homotopy/gauge equivalence between a [[circle n-bundle with connection]] $(P,\nabla)$ and a trivial circle $n$-bundle with connection given by a globally defined differential form $(0,\omega)$ is equivalently a section/trivialization of the underlying [[circle n-bundle]]. Therefore the above says that the fiber integration of an $n$-connection over a manifold with boundary is equivalently a section of the transgression of the underlying bundle to the boundary. \end{remark} We may combine this with the $\infty$-Chern-Simons action functional: \begin{defn} \label{}\hypertarget{}{} Let $\exp(i S_{CS}) \colon \mathbf{Fields} \to \mathbf{B}^n U(1)_{conn}$ be an [[schreiber:∞-Chern-Simons theory]] [[local action functional]] as in prop. \ref{HigherCSAsBoundaryTheory}. Then for $\Sigma_k$ an [[orientation|oriented]] [[smooth manifold|smooth]] $k$-[[dimension|dimensional]] [[manifold with boundary]], the corresponding \textbf{transgression defect} is the [[pasting]]-composite \begin{displaymath} \itexarray{ && && [\Sigma, \mathbf{Fields}] \\ && & {}^{\mathllap{(-)|_{\partial \Sigma}}}\swarrow && \searrow^{\mathrlap{[\Sigma_k, \exp(i S_{CS})]}} \\ && [\partial \Sigma, \mathbf{Fields}] && && [\Sigma_k, \mathbf{B}^n U(1)_{conn}] \\ && & \searrow& & {}^{\mathllap{(-)|_{\partial \Sigma}}}\swarrow && \searrow^{\mathrlap{\omega_\Sigma}} \\ && && [\partial \Sigma_k, \mathbf{B}^n U(1)_{conn}] && \swArrow_{\exp(2 \pi i \int_{\Sigma}(-))} && \Omega^{n-k+1} \\ && && & {}_{\exp(2 \pi i \int_{\partial \Sigma}(-))}\searrow && \swarrow \\ && && && \mathbf{B}^{n-k+1}U(1)_{conn} } \,, \end{displaymath} or rather its further pullback to the [[shape modality]] \begin{displaymath} \itexarray{ && [\Pi(\Sigma), \mathbf{Fields}] \\ & \swarrow \\ [\Pi(\partial \Sigma), \mathbf{Fields}] } \,. \end{displaymath} \end{defn} This is a defect between the boundary transgression, def. \ref{FiberIntegrationInDiffCohomologyAsDiagram}, of the $\infty$-Chern-Simons theory and the tautological higher differential higher Chern-Simons theory. We see below that both the [[Wess-Zumino-Witten theory]] as well as [[Wilson lines]] in Chern-Simons theory arise from transgression defects this way. (\ldots{}) \hypertarget{_topological_chernsimons_boundaries}{}\paragraph*{{$d = n-1$, Topological Chern-Simons boundaries}}\label{_topological_chernsimons_boundaries} (\ldots{}) \hypertarget{_wesszuminowitten_field_theories}{}\paragraph*{{$d = n-1$, Wess-Zumino-Witten field theories}}\label{_wesszuminowitten_field_theories} (\ldots{}) defect given by transgression over circle (\ldots{}) \hypertarget{_wilson_loopwilson_surface_field_theories}{}\paragraph*{{$d = n-2$, Wilson loop/Wilson surface field theories}}\label{_wilson_loopwilson_surface_field_theories} (\ldots{}) defect given by transgression over sphere (\ldots{}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Peierls bracket]] \item locality of [[local field theory]] is obsrvationally related to \emph{[[causal locality]]} \item [[prequantum geometry]] \item [[higher prequantum geometry]] \item traditional [[Lagrangian mechanics]] and [[Hamiltonian mechanics]] are naturally embedding into higher prequantum field theory by the notion of [[prequantized Lagrangian correspondences]] \item [[quantization]] of prequantum field theory is naturally formulated in terms of \emph{[[motivic quantization]]} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} For intorduction and survey see \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:Higher Prequantum Geometry]]} \end{itemize} The idea of formulating local prequantum field theory by spans in a slice over a ``space of phases'' in [[higher geometry]] has been expressed in the unpublished note \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:Nonabelian cocycles and their quantum symmetries]]} (2008) \end{itemize} A formulation of the idea for [[Dijkgraaf-Witten theory]]-type field theories is indicated in section 3 of \begin{itemize}% \item [[Daniel Freed]], [[Michael Hopkins]], [[Jacob Lurie]], [[Constantin Teleman]], \emph{[[Topological Quantum Field Theories from Compact Lie Groups]]} (2010) \end{itemize} based on the considerations in section 3.2 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[On the Classification of Topological Field Theories]]} (2009). \end{itemize} Based on the general formulation of the more general [[QFT with defects|field theory with defects]] described in section 4.3 there, in \begin{itemize}% \item [[Domenico Fiorenza]], [[Alessandro Valentino]], \emph{Boundary conditions in local TFTs} (in preparation) \end{itemize} the structure of such [[domain walls]]/defects/[[branes]] are analyzed in the prequantum theory, hence with coefficients in an [[(∞,n)-category of spans]]. The study of local prequantum [[schreiber:∞-Chern-Simons theory]] with its codimension-1 [[schreiber:∞-Wess-Zumino-Witten theory]] and codimension 2-[[Wilson line]]-theory in this fashion, in an ambient [[cohesive (∞,1)-topos]] is discussed in \begin{itemize}% \item [[Urs Schreiber]] et al., \emph{[[schreiber:Local prequantum field theory]]} \end{itemize} Much of the content of this entry here serve as, or arose as, lecture notes for \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:Higher Chern-Simons theory Introduction]]}, at the workshop \emph{\href{http://www.pitt.edu/~jdeblois/CS.html}{Chern-Simons Theory: Geometry, Topology and Physics}} University of Pittsburgh (May 2013) \end{itemize} Later this was developed further with [[Igor Khavkine]], exposition is here: \begin{itemize}% \item \emph{\href{https://www.physicsforums.com/insights/higher-prequantum-geometry-need-prequantum-geometry/}{Higher prequantum geometry I: The need for prequantum geometry}} \item \emph{\href{https://www.physicsforums.com/insights/higher-prequantum-geometry-ii-principle-extremal-action-comonadically/#toggle-id-1}{Higher prequantum geometry II: The principle of extremal action -- Comonadically}} \item \emph{\href{https://www.physicsforums.com/insights/higher-prequantum-geometry-iii-global-action-functional-cohomologically/}{Higher prequantum geometry III: The global action functional -- Cohomologically}} \item \emph{\href{https://www.physicsforums.com/insights/higher-prequantum-geometry-iv-covariant-phase-space-transgressively/}{Higher prequantum geometry IV: The covariant phase space -- Transgressively}} \item \emph{\href{https://www.physicsforums.com/insights/higher-prequantum-geometry-v-local-observables-lie-theoretically/}{Higher prequantum geometry V: The local observables -- Lie theoretically}} \end{itemize} [[!redirects prequantum field theory]] [[!redirects prequantum field theories]] [[!redirects local prequantum field theory]] [[!redirects local prequantum field theories]] [[!redirects extended prequantum field theory]] [[!redirects extended prequantum field theories]] [[!redirects higher prequantum field theory]] [[!redirects higher prequantum field theories]] [[!redirects pre-quantum field theory]] [[!redirects pre-quantum field theories]] \end{document}