\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{presentations of (infinity,1)-sheaf (infinity,1)-toposes} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-Topos Theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{contents}{Contents}\dotfill \pageref*{contents} \linebreak \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{plan}{Plan}\dotfill \pageref*{plan} \linebreak \noindent\hyperlink{sheaf_toposes}{Sheaf toposes}\dotfill \pageref*{sheaf_toposes} \linebreak \noindent\hyperlink{presheaves}{Presheaves}\dotfill \pageref*{presheaves} \linebreak \noindent\hyperlink{sheaves}{Sheaves}\dotfill \pageref*{sheaves} \linebreak \noindent\hyperlink{categories_and_their_presentation}{$(\infty,1)$-categories and their presentation}\dotfill \pageref*{categories_and_their_presentation} \linebreak \noindent\hyperlink{presentations}{Presentations}\dotfill \pageref*{presentations} \linebreak \noindent\hyperlink{sheaf_toposes_2}{$(\infty,1)$-Sheaf $(\infty,1)$-toposes}\dotfill \pageref*{sheaf_toposes_2} \linebreak \noindent\hyperlink{presheaves_2}{$(\infty,1)$-Presheaves}\dotfill \pageref*{presheaves_2} \linebreak \noindent\hyperlink{sheaves_2}{$(\infty,1)$-sheaves}\dotfill \pageref*{sheaves_2} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{abelian_sheaf_cohomology_as_special_case_of_stackification}{Abelian sheaf cohomology as special case of $\infty$-stackification}\dotfill \pageref*{abelian_sheaf_cohomology_as_special_case_of_stackification} \linebreak \hypertarget{idea}{}\section*{{Idea}}\label{idea} An [[(∞,1)-sheaf]] -- often called a [[∞-stack]] -- is the [[(infinity,1)-category|(∞,1)-categorical]] analog of a [[sheaf]]. Just like a [[category of sheaves]] is a [[topos]], an [[(∞,1)-category of (∞,1)-sheaves]] is an [[(∞,1)-topos]]. There is good [[motivation for sheaves, cohomology and higher stacks]]. Here we recall basic definitions and then concentrate on [[model category|1-categorical models]] that [[presentable (infinity,1)-category|present]] [[(∞,1)-category of (∞,1)-sheaves|(∞,1)-categories of ∞-stacks]]. What we describe is effectively the old theory of the [[model structure on simplicial presheaves]] seen in the new light of [[Higher Topos Theory]]. \hypertarget{plan}{}\section*{{Plan}}\label{plan} We proceed as follow. \begin{itemize}% \item As a preparation, \begin{itemize}% \item we recall 1-categorical [[presheaf|presheaves]] \item and how a [[category of sheaves]] may equivalently be thought of as \begin{itemize}% \item a category [[geometric embedding|geometrically embedded]] into that of presheaves \item or equivalently as the [[localization]] of presheaves at [[local isomorphisms]]. \end{itemize} \end{itemize} \item Then in the main part, after recalling \begin{itemize}% \item the definition of [[(∞,1)-category]] \begin{itemize}% \item and the [[presentable (infinity,1)-category|presentation]] of $(\infty,1)$-categories by [[model category|1-categorical models]] \end{itemize} \end{itemize} we give \begin{itemize}% \item the general definition of [[(∞,1)-presheaves]]; \begin{itemize}% \item and their [[presentable (infinity,1)-category|presentation]] by the [[global model structure on simplicial presheaves]] \end{itemize} \end{itemize} and finally \begin{itemize}% \item the definition of the [[(∞,1)-category of (∞,1)-sheaves]] by [[reflective (infinity,1)-subcategory|(∞,1)-geometric embedding]]; \item and the [[model category|1-categorical model]] of this by [[Bousfield localization]] to the [[local model structure on simplicial presheaves]]. \end{itemize} \end{itemize} \hypertarget{sheaf_toposes}{}\section*{{Sheaf toposes}}\label{sheaf_toposes} It is helpful to briefly recall the story that we want to tell in the [[category theory]] context, because in the full [[higher category theory]] context it will be \textbf{literally the same} with all notions such as [[adjoint functor]], [[exact functor]] etc suitably regarded in the context of [[(∞,1)-functors]]. \hypertarget{presheaves}{}\subsection*{{Presheaves}}\label{presheaves} Consider a [[category]] $C$ that we want to think as a category of ``test spaces''. Classical choices would be $C =$ [[Top]], the category of [[topological spaces]], $C =$ [[Diff]], the category of smooth manifolds or $C = Op(X)$, the [[category of open subsets]] of some [[topological space]] $X$. Let [[Set]] be the category of sets. We write \begin{displaymath} PSh(C) := [C^{op}, Set] := Func(C^{op}, Set) \end{displaymath} for the category of [[presheaf|presheaves]] on $C$. This is like a category of [[space and quantity|very general spaces]] modeled on $C$ as described at [[motivation for sheaves, cohomology and higher stacks]]. \hypertarget{sheaves}{}\subsection*{{Sheaves}}\label{sheaves} In fact, this is a bit too general for most purposes: the objects of $PSh(C)$ may be very non-local in that they don't respect the way test objects in $C$ are supposed to glue together. The full subcategory on those presheaves that do respect some kind of gluing of test objects is the [[category of sheaves]]. \begin{udefn} A [[category of sheaves]] on $C$ is a category $Sh(C)$ equipped with a [[geometric embedding]] into $PSh(C)$ \begin{displaymath} Sh(C) \stackrel{\leftarrow}{\to} PSh(C) \,. \end{displaymath} \end{udefn} Recall that this means that \begin{itemize}% \item $Sh(C) \hookrightarrow PSh(C)$ is a [[full and faithful functor]]; \item $\bar {(\cdot)} : PSh(C) \to Sh(C)$ is a [[exact functor|left exact]] [[left adjoint]]. \end{itemize} in other words that \begin{itemize}% \item $Sh(C) \hookrightarrow PSh(C)$ is the inclusion of a [[reflective subcategory]]; \item with the special property that the [[left adjoint]] to the inclusion is [[exact functor|left exact]] (i.e. preserves finite [[limits]]). \end{itemize} In view of our models for $\infty$-sheaves it is of importance that this implies an equivalence characterization \begin{uprop} The category $Sh(C)$ is equivalent to the full [[subcategory]] of $S$-[[local object|local]] presheaves, where $S$ is the set of [[local isomorphisms]]. \end{uprop} Another useful kind of [[geometric embeddings]] is that of the point: let ${*}$ be the category with a single morphism (the identity on a single object). Then $PSh({*}) \simeq Sh({*}) \simeq Set$. Geometric embeddings \begin{displaymath} x : Sh({*}) \stackrel{\leftarrow}{\to} Sh(C) \end{displaymath} are called [[point of a topos|points]] of $Sh(C)$. We say that $Sh(C)$ has \emph{enough points} if isomorphisms of sheaves can be tested on points \begin{displaymath} (f : A \stackrel{\simeq}{\to} B)\in Sh(C) \;\; \Leftrightarrow \;\; \forall x : (x^* f : x^* A \stackrel{\simeq}{\to} x^* B) \,. \end{displaymath} This is the situation we shall concentrate on here. \begin{itemize}% \item The topos $Sh(Diff)$ has enough points, one for every $n \in \mathbb{N}$. \item The topos $Sh(Op(X))$ has enough points: one for every ordinary point of $X$. \end{itemize} If $Sh(C)$ has enough points, we may characterize sheaves in yet another way, which is the one that directly suggests the [[local model structure on simplicial presheaves]] discussed below: \begin{uprop} Let $S \subset Mor(PSh(C))$ be the set of \emph{[[stalk]]wise isomorphisms}, i.e. those morphisms $f : A \to B$ of presheaves such that for all [[point of a topos|points]] $x$ the morphism $x^* f : x^* A \to x^* B$ is an [[isomorphism]] (of [[sets]]). If $Sh(C)$ has [[point of a topos|enough points]], then $Sh(C)$ is equivalent to the full [[subcategory]] of $S$-local presheaves. \end{uprop} The [[local model structure on simplicial presheaves]] that we are going to describe is obtained from this description of sheaves by \begin{itemize}% \item replacing [[sets]] by [[simplicial set]] \item replacing [[stalk]]wise [[isomorphism]] of sets by [[stalk]]wise [[model structure on simplicial sets|weak homotopy equivalences]] of simplicial sets. \end{itemize} So the model structures we shall encounter are plausible guesses. What is less trivial is that this plausible structure indeed [[presentable (infinity,1)-category|presents]] the fully general notion of [[(∞,1)-sheaf]]/[[∞-stack]]. This fully general notion we introduce now. \hypertarget{categories_and_their_presentation}{}\section*{{$(\infty,1)$-categories and their presentation}}\label{categories_and_their_presentation} An ordinary [[locally small category]] is a [[enriched category|category enriched]] over the category [[Set]] of [[sets]]. An [[(∞,0)-category]] is an [[∞-groupoid]] which we think of as modeled by a [[simplicial set]] that is a [[Kan complex]]. Recall that there is a notion of [[nerve and realization]] \begin{displaymath} N : SSet\text{-}Cat \stackrel{\leftarrow}{\to} SSet : |-| \end{displaymath} for [[SSet]]-[[enriched category|enriched categories]] induced by a [[simplicial object|cosimplicial]] [[simplicially enriched category]] \begin{displaymath} \Delta_{SSet-Cat} : \Delta \to SSet-Cat \end{displaymath} where the [[nerve]] operation $N$ is called the [[homotopy coherent nerve]] of [[simplicially enriched category|simplicially enriched categories]]. \begin{udefn} An [[(∞,1)-category]] is a [[enriched category|category enriched]] over $\infty$-groupoids, i.e. an [[SSet]]-[[enriched category]] all whose [[hom-objects]] happen to be [[Kan complexes]]. Given two $(\infty,1)$-categories $\mathbf{C}$ and $\mathbf{D}$ the [[(∞,1)-functor]] $(\infty,1)$-category is \begin{displaymath} Func(\mathbf{C}, \mathbf{D}) := |SSet(N(\mathbf{C}), N(\mathbf{D}))| \,. \end{displaymath} This is indeed itself an $(\infty,1)$-category ([[Higher Topos Theory|HTT, prop 1.2.7.3]]). The [[(∞,1)-category of (∞,1)-categories]] $(\infty,1)Cat$ is that whose \begin{itemize}% \item objects are $(\infty,1)$-categories; \item for $\mathbf{C}$ and $\mathbf{D}$ two $(\infty,1)$-categories the $\infty$-groupoid $(\infty,1)Cat(\mathbf{C}, \mathbf{D})$ is the maximal [[Kan complex]] inside the [[simplicial set]] of maps between the [[homotopy coherent nerves]] \begin{displaymath} (\infty,1)Cat(\mathbf{C}, \mathbf{D}) := Core( SSet(N(\mathbf{C}), N(\mathbf{D})) ) \,. \end{displaymath} \end{itemize} \end{udefn} \textbf{Examples} \begin{itemize}% \item Using the [[monoidal category|monoidal]] embedding $const : Set \hookrightarrow \infty Grpdf \subset SSet$ every ordinary category is an $(\infty,1)$-category. \item The $(\infty,1)$-category $\infty Grpd$ ([[∞Grpd]]) is the full [[SSet]-subcategory of [[SSet]] on [[Kan complexes]]. \end{itemize} \begin{udefn} The [[simplicial homotopy groups|simplicial connected components]] functor \begin{displaymath} \pi_0 : SSet \to Set \end{displaymath} is strong monoidal and hence induces a functor \begin{displaymath} H : (\infty,1)Cat \to Cat \,. \end{displaymath} The image $H(\mathbf{C})$ of an $(\infty,1)$-category $\mathbf{C}$ with $H(\mathbf{C})(x,y) = \pi_0(\mathbf{C}(x,y))$ is the [[homotopy category of an (∞,1)-category]]. Two $(\infty,1)$-categories $\mathbf{C}$ and $\mathbf{D}$ are \textbf{equivalent} if they are isomorphic in $H((\infty,1)Cat)$ \begin{displaymath} (f : \mathbf{C} \to \mathbf{D} \;is equivalence) \;\; \Leftrightarrow \;\; (H_{(\infty,1)Cat}(f) : \mathbf{C} \to \mathbf{D} \; is isomorphism) \,. \end{displaymath} \end{udefn} \hypertarget{presentations}{}\subsection*{{Presentations}}\label{presentations} It is often convenient to [[presentable (infinity,1)-category|present]] $(\infty,1)$-categories by 1-categorical [[model category|models]]. \begin{udefn} For $\mathbf{A}$ a [[combinatorial simplicial model category]], the $(\infty,1)$-category [[presentable (infinity,1)-category|presented]] by it is the full subcategory $\mathbf{A}^\circ \subset \mathbf{A}$ on objects that are both cofibrant and fibrant. \end{udefn} \textbf{Remark} The axioms of a simplicial model category ensure that the [[hom-object|hom-simplicial sets]] of $\mathbf{A}^\circ$ are indeed [[Kan complexes]]. (for instance [[Higher Topos Theory|HTT, remark 3.1.8]]). \begin{uprop} Let $\mathbf{A}$ and $\mathbf{B}$ be [[combinatorial simplicial model category|combinatorial simplicial model categories]]. Then the corresponding $(\infty,1)$-categories $\mathbf{A}^\circ$ and $\mathbf{B}^\circ$ are equivalent precisely if there is a sequence of [[SSet]]-[[enriched functor|enriched]] [[Quillen equivalences]] \begin{displaymath} \mathbf{A} \stackrel{\leftarrow}{\to} \stackrel{\to}{\leftarrow} \stackrel{\leftarrow}{\to} \cdots \mathbf{B} \,. \end{displaymath} \end{uprop} \hypertarget{sheaf_toposes_2}{}\section*{{$(\infty,1)$-Sheaf $(\infty,1)$-toposes}}\label{sheaf_toposes_2} There is now an obvious definition of $(\infty,1)$-categories of $(\infty,1)$-presheaves and of $(\infty,1)$-sheaves by interpreting the 1-categorical story in the $(\infty,1)$-categorical context. \hypertarget{presheaves_2}{}\subsection*{{$(\infty,1)$-Presheaves}}\label{presheaves_2} Now we generalize the above from sheaves to [[(∞,1)-sheaves]] also known as [[∞-stacks]]. \begin{udefn} The $(\infty,1)$-category of [[(∞,1)-presheaves]] on $C$ is \begin{displaymath} PSh_\infty(C) := [C^{op}, \infty Grpd] = Func( C^{op}, \infty Grpd ) \,. \end{displaymath} \end{udefn} \begin{uprop} see also [[Higher Topos Theory|HTT, prop. 5.1.1.1]]) The $(\infty,1)$-category presented by the [[global model structure on simplicial presheaves]] $SPSh(C)_{proj}$ on $C$ (either the projective or the injective one) is equivalent to that of $(\infty,1)$-presheaves on $C$: \begin{displaymath} (SPSh(C)_{proj})^{\circ} \simeq (SPSh(C)_{inj})^{\circ} \simeq PSh_\infty(C) \,. \end{displaymath} \end{uprop} \hypertarget{sheaves_2}{}\subsection*{{$(\infty,1)$-sheaves}}\label{sheaves_2} There are $(\infty,1)$-category analogs of all the familiar notions from [[category theory]], in particular \begin{itemize}% \item [[adjoint functor]] \item [[exact functor]] (preserving finite [[limits]]). \end{itemize} Using this we obtain a definition of [[geometric embedding]] of $(\infty,1)$-toposes , i.e. left exaxt [[reflective (∞,1)-subcategories]] by literally copying the 1-categorical definition. \begin{udefn} An [[(∞,1)-category of (∞,1)-sheaves]] is a [[geometric embedding]] into an [[(∞,1)-category of (∞,1)-presheaves]] \begin{displaymath} Sh_\infty(C) \stackrel{\leftarrow}{\to} PSh_\infty(C) \,. \end{displaymath} \end{udefn} \begin{lemma} \label{}\hypertarget{}{} Let the [[combinatorial simplicial model category]] $\mathbf{B}$ be a left [[Bousfield localization]] of the [[combinatorial simplicial model category]] $\mathbf{A}$ then \begin{displaymath} \mathbf{B}^\circ \stackrel{\leftarrow}{\to} \mathbf{A}^\circ \end{displaymath} is the inclusion of a [[reflective (∞,1)-subcategory]]. \end{lemma} \begin{proof} By [[Higher Topos Theory|HTT, prop A.3.7.4]] every combinatorial simplicial left [[Bousfield localization]] is given by a set $S$ of cofibrations such that \begin{itemize}% \item the fibrant objects of $\mathbf{B}$ are precisely the fibrant objects in $\mathbf{A}$ that are $S$-[[local object]]; \item the weak equivalences of $\mathbf{B}$ are the $S$-local morphisms in $\mathbf{A}$. \end{itemize} Accordingly $\mathbf{B}^\circ$ is the full $\infty Grpd$-enriched subcategory of $\mathbf{A}^\circ$ on $S$-[[local objects]]. (see also [[Higher Topos Theory|HTT, prop 6.5.2.14]]). By [[Higher Topos Theory|HTT, prop. 5.5.4.15]] this means that $\mathbf{B}$ is a [[reflective (∞,1)-subcategory]] of $\mathbf{A}$. \end{proof} \textbf{Remark} Notice that this does not yet say that the localization is \emph{left exact} . But this makes at least plausible that the [[local model structure on simplicial presheaves]] is a [[presentable (infinity,1)-category|presentation]] for an [[(∞,1)-category of (∞,1)-sheaves]]. That this is indeed the case is \begin{lemma} \label{SizeOfLeftCoset}\hypertarget{SizeOfLeftCoset}{} The [[local model structure on simplicial presheaves]] $SSh(C)^{l loc}_{proj}$ presents the [[hypercompletion|hypercompleted version]] of the [[(∞,1)-category of (∞,1)-sheaves]] $Sh^{hc}(C)$ on $C$. \begin{displaymath} (SPSh(C)_{proj}^{loc})^\circ \simeq Sh^{hc}(C) \,. \end{displaymath} \end{lemma} \textbf{Remark} See the discussion at [[?ech cohomology]] for the role of [[hypercompletion]]. \hypertarget{applications}{}\section*{{Applications}}\label{applications} \hypertarget{abelian_sheaf_cohomology_as_special_case_of_stackification}{}\subsection*{{Abelian sheaf cohomology as special case of $\infty$-stackification}}\label{abelian_sheaf_cohomology_as_special_case_of_stackification} The [[nerve]] operation of the [[Dold-Kan correspondence]] \begin{displaymath} N : Ch_+ \to SimpAb \subset \infty Grpd \end{displaymath} embeds [[sheaf|sheaves]] with values in non-negatively graded [[chain complex]]es of abelian groups into simplicial sheaves as those simplicial sheaves with values in [[Kan complex]]es that carry a struict abelian group structure. This way [[homological algebra]] and [[abelian sheaf cohomology]] are realized as special cases of models for $\infty$-stacks: a complex of abelian sheaves presents a stably abelian $\infty$-stack. \begin{uprop} Under the [[Dold-Kan correspondence]] [[abelian sheaf cohomology]] identifies with the [[hom-set]] of the [[homotopy category of an (infinity,1)-category|homotopy category]] corresponding [[infinity-stack]] [[(infinity,1)-topos]]. More precisely, let \begin{itemize}% \item the underlying [[site]] be the [[category of open subsets]] $C = Op(X)$ of a [[topological space]] $X$, \item let $A \in Sh(X)$ be a sheaf with values in abelian groups on $X$; \item let $\mathbf{B}^n A \in Sh(X,SSet)$ be the image of the complex of sheaves $A[-n]$ concentrated in degree $n$ under the [[Dold-Kan correspondence|Dold-Kan]] [[nerve]]; \item write $X \in Sh(X)$ for the [[terminal object]] sheaf in $Sh(X)$ (the sheaf constant on the singleton set). \end{itemize} Then degree $n$ [[abelian sheaf cohomology]] of $X$ with coefficients in $A$ is homotopy classes of maps from $X$ to $\mathbf{B}^n A$: \begin{displaymath} H^n(X,A) \simeq Ho_{SSh(X)}(X, \mathbf{B}^n A) \,. \end{displaymath} \end{uprop} \begin{proof} The original proof was given in [[BrownAHT]] in terms of the [[category of fibrant objects]] structure on locally Kan simplicial sheaves. The analogous arguments in terms of the full injective model structure were given by Jardine. See section 6 of his \href{http://www.math.uwo.ca/~jardine/papers/Fields-01.pdf}{lecture notes}. \end{proof} [[!redirects presentations of (∞,1)-sheaf (∞,1)-toposes]] [[!redirects models for infinity-stack (infinity,1)-topoi]] [[!redirects models for ∞-stack (∞,1)-toposes]] [[!redirects models for ∞-stack (∞,1)-topoi]] [[!redirects models for infinity-stack (infinity,1)-toposes]] \end{document}