\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{presheaf} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category Theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{limits_and_colimits}{Limits and colimits}\dotfill \pageref*{limits_and_colimits} \linebreak \noindent\hyperlink{special_cases}{Special cases}\dotfill \pageref*{special_cases} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{presheaf} on a [[small category]] $C$ is a [[functor]] \begin{displaymath} F \;\colon\; C^{op} \to Set \end{displaymath} from the [[opposite category]] $C^{op}$ of $C$ to the category [[Set]] of [[set]]s. Equivalently this may be thought of as a [[contravariant functor]] $F \;\colon\; C \to Set$. More generally, given any category $S$, an \textbf{$S$-valued presheaf} on $C$ is a functor \begin{displaymath} F \;\colon\; C^{op} \to S. \end{displaymath} While, hence, presheaves are just [[functors]] (on [[small categories]]), one says ``presheaf'' to indicate a specific perspective or interest, namely interest in the \emph{[[sheafification]]} of the functor/presheaf, or at least interest in the [[functor category]] as a [[topos]] (the [[presheaf topos]]). Hence ``presheaf'' is a [[concept with an attitude]]. Historically, the initial applications of presheaves and sheaves involved cases like $S =$ [[CRing]] (the category of [[commutative ring|commutative rings]]), $S =$[[Ab]] ([[abelian groups]]), $S =$ [[Mod|RMod]] ([[modules]]), etc. Later, especially with the development of [[topos theory]], the primary importance of the [[sheaf topos|category of set-valued (pre)sheaves]] as a [[topos]] was recognized; these other cases could be considered algebraic objects which live in the topos. This article and the one on [[sheaf topos]] recognize these later developments by making the set-valued case the default (in other words, presheaf or sheaf without further qualification is understood to refer to the set-valued case). The \textbf{[[category of presheaves]]} on $C$, usually denoted $Set^{C^{op}}$ or $[C^{op},Set]$, but often abbreviated as $\widehat{C}$, has: \begin{itemize}% \item functors $F : C^{op} \to Set$ as objects; \item [[natural transformation|natural transformations]] between such functors as morphisms. \end{itemize} As such, it is an example of a [[functor category]]. \hypertarget{remarks}{}\subsection*{{Remarks}}\label{remarks} \begin{itemize}% \item Speaking of functors as presheaves indicates operations that one wants to do apply to these functors, or certain properties that one wants to check. \begin{itemize}% \item when $S = Set$, and especially one is interested in the [[Yoneda embedding]] of a category $C$ into its presheaf category $[C^{op}, Set]$ for purposes of studying, for instance, [[limit]]s, [[colimit]]s, [[ind-object]]s, and [[pro-object]]s of $C$; \item or when there is the structure of a [[site]] on $C$, such that it makes sense to ask if a given presheaf is actually a [[sheaf]]. \end{itemize} \item One generally useful way to think of presheaves is in the sense of [[space and quantity]]. \item In the case where $S = Set$ and $C$ is [[small category|small]], an important general principle is that the presheaf category $[C^{op},Set]$ is the [[free cocompletion]] of $C$; see [[Yoneda extension]]. Intuitively, it is formed by taking $C$ and `freely throwing in small colimits'. The category $C$ is contained in $[C^{op},Set]$ via the [[Yoneda embedding]] \begin{displaymath} Y : C \to [C^{op},Set] \end{displaymath} The Yoneda embedding sends each object $c \in C$ to the presheaf \begin{displaymath} F(-) = hom(-, c) \end{displaymath} Presheaves of this form, or isomorphic to those of this form, are called [[representable functors|representable]]; among their properties, representable presheaves always turn colimits into limits, in the sense that a representable functor from $C^{op}$ to $Set$ turns colimits in $C$ (i.e., limits in $C^{op}$) into limits in $Set$ (i.e., colimits in $Set^{op}$). In general, such continuity is a necessary but not sufficient criterion for representability; however, nicely enough, it \emph{is} sufficient when $C$ itself is a presheaf category. To see this, suppose $K$ is such a presheaf on $C = [D^{op}, Set]$, and let $G = K Y$, a presheaf on $D$. By the [[Yoneda lemma]], we have a natural isomorphism between $[D^{op}, Set](Y(-), G)$ and $K Y(-)$. But by the free cocompletion property of the Yoneda embedding, a colimit-preserving functor on presheaves is entirely determined by its precomposition with $Y$; accordingly, our isomorphism must extend to an identification of $[C^{op}, Set](-, G)$ with $K(-)$, thus establishing the representability of $K$. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{limits_and_colimits}{}\subsubsection*{{Limits and colimits}}\label{limits_and_colimits} Any [[category of presheaves]] is [[complete category|complete]] and [[cocomplete category|cocomplete]], with both [[limit|limits]] and [[colimit|colimits]] being computed \emph{pointwise}. That is, to compute the limit or colimit of a diagram $F : D \to Set^{C^op}$, we think of it as a functor $F: D \times C^{op} \to Set$ and take the limit or colimit in the $D$ variable. \begin{uprop} Every presheaf is a [[colimit]] of [[representable functor|representable presheaves]]. \end{uprop} An elegant way to express this colimit for a presheaf $F : C^{op} \to Set$ is in terms of the [[coend]] identity \begin{displaymath} F(-) = \int^{c \in C} F(c) \times hom_C(-,c) \,, \end{displaymath} which follows by [[Yoneda reduction]]. See also [[co-Yoneda lemma]]. More concretely: let $Y : C \to [C^{op}, Set]$ denote the [[Yoneda embedding]] and let $C_F := Y/F$ be the corresponding [[comma category]], the [[category of elements]] of $F$: \begin{displaymath} C_F := \left\lbrace \itexarray{ Y(V) &&\stackrel{Y(g)}{\to}&& Y(V') \\ & {}_f\searrow && \swarrow_{f'} \\ && F } \right\rbrace \end{displaymath} and let $p : C_F \to C$ the canonical forgetful functor. Then the colimit over representables expression $F$ is \begin{displaymath} F \simeq colim_{(Y(V) \to F) \in C_F} (Y\circ p) \,. \end{displaymath} This is often written with some convenient abuse of notation as \begin{displaymath} F \simeq colim_{V \to F} V \,. \end{displaymath} Notice that these formulas can also be understood as those for the left [[Kan extension]] (see there) of $F$ along the identity functor. \begin{proof} Notice that for every $B \in [C^{op}, Set]$ and using the property of the [[hom-functor]] we have \begin{displaymath} \begin{aligned} Hom_{[C^{op}, Set]}(colim_{(Y(V) \to F) \in C_F} (Y\circ p),B) &\simeq lim_{(Y(V) \to F) \in C_F} Hom_{[C^{op}, Set]}(Y(V),B) \\ & \simeq lim_{(Y(V) \to F) \in C_F} B(V) \end{aligned} \end{displaymath} by the [[Yoneda lemma]]. By the definition of [[limit]] we have that \begin{displaymath} \cdots=Hom_{[C_F^{op}, Set]}(pt,B), \end{displaymath} so for each natural transformation $\alpha \in Hom_{[C_F^{op}, Set]}(pt,B)$ and each object $h: Y(V)\to F\in C_F$, $\alpha_h$ is a map $\{*\}\to B(V)$, that is, it is an element of $B(V)$. However, by Yoneda, we know that each object $h:Y(V)\to F\in C_F$ specifies a unique element $h\in F(V)$. Then rephrasing this, $\alpha$ specifies a [[function]] $F(V)\to B(V)$. The naturality of this assignment is guaranteed by the naturality of the map $\alpha$. Then $\alpha$ induces a natural transformation $k^\alpha:F\to B$. It's easy to check that $k$ defines an isomorphism: \begin{displaymath} Hom_{[C_F^{op}, Set]}(pt,B) \simeq Hom_{[C^{op}, Set]}(F,B) \,. \end{displaymath} Since this holds for all $B$, the claim follows, again using the [[Yoneda lemma|Yoneda lemma]]. \end{proof} \hypertarget{special_cases}{}\subsection*{{Special cases}}\label{special_cases} \begin{itemize}% \item [[representable functor|representable presheaf]] \item [[concrete presheaf]] \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} Examples for presheaves are abundant. Here is a non-representative selection of some examples. \begin{itemize}% \item For $C$ a [[locally small]] category, every object $c \in C$ gives rise to the [[representable functor|representable presheaf]] $Hom_C(-, c) : C^{op} \to Set$. \item More generally, for $i : C \hookrightarrow D$ a [[subcategory]] of a locally small category $D$, every object $d \in D$ gives rise to the presheaf \begin{displaymath} Hom_D(i(-), d) : C^{op} \to Set \,. \end{displaymath} Let's spell this out in more detail: given a mophism $\phi : V \to U$ in $C$, we can take any morphism $f : i(U) \to X$ in $Hom_{D}(U,X)$ and turn it into a morphism $V \stackrel{\phi}{\to} U \stackrel{f}{\to} X$ in $Hom_{D}(i(V),X)$. This determines a map of set \begin{displaymath} f^* : Hom_{D}(i(U),X) \to Hom_{D}(i(V),X) \,. \end{displaymath} So we have a functorial assignment of the form \begin{displaymath} \itexarray{ W && \mapsto && Hom_{Diff}(i(W),X) \\ \downarrow^g &&&& \uparrow^{g^*} \\ V && \mapsto && Hom_{Diff}(i(V),X) \\ \downarrow^f &&&& \uparrow^{f^*} \\ U && \mapsto && Hom_{Diff}(i(U),X) } \,. \end{displaymath} Of course $i$ here could be any functor whatsoever. Asking if such a presheaf is [[representable functor|representable]] is asking for a right [[adjoint functor]] of $i$. \item A [[simplicial set]] is a presheaf on the [[simplex category]] A [[globular set]] is a presheaf on the [[globe category]]. A [[cubical set]] is a presheaf on the [[cube category]]. \item A [[diffeological space]] is a [[concrete presheaf]] on [[CartSp]]. \item An important class of presheaves is those on a [[category of open subsets]] $Op(X)$ of a [[topological space]] or [[smooth manifold]] $X$. \item Traditional standard examples include: the presheaf of [[smooth function]]s on $X$, that assigns to each $U \subset X$ the set $C^\infty(U,\mathbb{R})$ of smooth functions and to each inclusion $V \subset U$ the corresponding restriction operation of functions. This is further a sheaf. \item Traditional standard example which is a presheaf but not a sheaf: the presheaf of exact forms on $X$, that assigns to $U \subset X$ the set $\Omega^\bullet_{exact}(U)$ of exact forms on $U$ and to each inclusion $V \subset U$ the corresponding restriction operation of functions. Here, and like above, the site is made up by open sets in $X$ with inclusions as morphisms. \end{itemize} \ldots{} etc. pp. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item \textbf{presheaf} [[constant presheaf]] \item [[(2,1)-presheaf]] [[presheaf of groupoids]] \item [[(∞,1)-presheaf]] [[simplicial presheaf]] \item [[(∞,n)-presheaf]] \item [[Yoneda lemma]], [[Yoneda extension]] \end{itemize} [[!redirects presheaves]] [[!redirects presheaf category]] [[!redirects presheaf categories]] \end{document}