\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{pretopological space} \hypertarget{pretopological_spaces}{}\section*{{Pretopological spaces}}\label{pretopological_spaces} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{convergence_structure}{Convergence structure}\dotfill \pageref*{convergence_structure} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{topological_structure}{Topological structure}\dotfill \pageref*{topological_structure} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{pretopological space} is a slight generalisation of a [[topological space]] where the concept of \emph{[[neighbourhood]]} is taken as primary. The [[extra structure]] on the [[underlying set]] of a pretopological space is called its \emph{pretopology}, but this should not be confused with a [[Grothendieck pretopology]] (which is not even analogous). \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} Given a [[set]] $S$, let a \textbf{point} in $S$ be an element of $S$, and let a \textbf{set} in $S$ be a [[subset]] of $S$. Given a [[relation]] $\stackrel{\circ}\in$ between points in $S$ and sets in $S$, say that the set $U$ is a \textbf{neighbourhood} (or \textbf{$\stackrel{\circ}\in$-neighbourhood} to be precise) of $x$ if $x \stackrel{\circ}\in U$ (which may also be written $x \in \stackrel{\circ}U$). A \textbf{pretopology} (or \textbf{pretopological structure}) on $S$ is such a relation $\stackrel{\circ}\in$ that satisfies these properties: \begin{enumerate}% \item Centred: If $U$ is a neighbourhood of $x$, then $x$ belongs to $U$:\begin{displaymath} x \stackrel{\circ}\in U \;\Rightarrow\; x \in U . \end{displaymath} \item Nontrivial: Every point $x$ has a neighbourhood. In light of (4), the entire space is a neighbourhood of $x$:\begin{displaymath} x \stackrel{\circ}\in S . \end{displaymath} (Some references leave this out, but that seems to be an error.) \item Directed: If $U$ and $V$ are neighbourhoods of $x$, then so is some set contained in their [[intersection]]. In the light of (4), it follows that their intersection is itself a neighbourhood:\begin{displaymath} x \stackrel{\circ}\in U \;\Rightarrow\; x \stackrel{\circ}\in V \;\Rightarrow\; x \stackrel{\circ}\in U \cap V . \end{displaymath} (Strictly speaking, the relation should not be called [[direction|directed]] unless it is also nontrivial.) \item Isotone: If $U$ is a neighbourhood of $x$ and $U$ is contained in $V$, then $V$ is a neighbourhood of $x$:\begin{displaymath} x \stackrel{\circ}\in U \;\Rightarrow\; U \subseteq V \;\Rightarrow\; x \stackrel{\circ}\in V . \end{displaymath} \end{enumerate} In other words, the collection of neighbourhoods of $x$ must be a [[filter]] that is refined by the free [[ultrafilter]] at $x$. This filter is called the \textbf{neighbourhood filter} of $x$. A pretopology can also be given by a base or subbase. A \textbf{[[base]]} for a pretopology is any relation that satisfies (1--3), using the first version for each of (2,3); a \textbf{[[subbase]]} is any relation that satisfies (1). (It would not really be appropriate to use the symbol `$\stackrel{\circ}\in$' for a mere base or subbase; you'd probably want to think of it as a family of sets indexed by the points, and use the term `basic neighourhood' or `subbasic neighbourhood'.) You get a base (in fact one satisfying the stronger versions of 2,3) from a subbase by closing under finitary intersections; you get a pretopology from a base by taking supsersets. (Really, this is just a special case of considering a base or subbase of a [[filter]].) A \textbf{pretopological space} is a set equipped with a pretopological structure. A \textbf{continuous map} from a pretopological space $S$ to a pretopological space $T$ is a [[function]] $f$ from $S$ to $T$ such that: \begin{itemize}% \item For every point $x$ in $S$, if $U$ is a neighbourhood of $f(x)$ in $T$, then the [[preimage]] $f^*(U)$ is a neighbourhood of $x$ in $S$. \end{itemize} In this way, pretopological spaces and continuous maps form a [[category]] $Pre Top$. \hypertarget{convergence_structure}{}\subsection*{{Convergence structure}}\label{convergence_structure} If $F$ is a [[filter]] on a pretopological space $S$, then $F$ \textbf{converges} to a point $x$ (written $F \to x$) if $F$ refines (contains) the neighbourhood filter of $x$. This relation satisfies the following properties: \begin{itemize}% \item Centred: The free ultrafilter at $x$ (the collection of all sets that $x$ belongs to) converges to $x$:\begin{displaymath} \{ A \;|\; x \in A \} \to x . \end{displaymath} \item Isotone: If $F$ converges to $x$ and $G$ refines $F$, then $G$ converges to $x$:\begin{displaymath} F \to x \;\Rightarrow\; F \subseteq G \;\Rightarrow\; G \to x . \end{displaymath} \item Infinitely directed: The intersection of all filters that converge to $x$ itself converges to $x$:\begin{displaymath} \bigcap \{ F \;|\; F \to x \} \to x . \end{displaymath} \end{itemize} In this way, every pretopological space becomes a [[convergence space]]. In fact, we can recover the pretopological structure from the convergence structure as follows: $x \stackrel{\circ}\in U$ if and only if $U$ belongs to every filter that converges to $x$. In other words, that intersection that appears in the infinite filtration condition is the neighbourhood filter of $x$. Furthermore, this definition assigns a pretopological structure to any convergence space satsifying the conditions above, and a map between pretopological spaces is continuous if and only if it is continuous as a map between convergence spaces. Thus, we can define a pretopological space as an infinitely directed convergence space, making $Pre Top$ a [[full subcategory]] of the category $Conv$ of convergence spaces. Actually, we can do more. The definition of $\stackrel{\circ}U$ from the convergence structure assigns a pretopological structure to \emph{any} convergence space, although in general this pretopology defines a weaker notion of convergence (more filters converge to more points). Thus, $Pre Top$ is also a [[reflective subcategory]] of $Conv$. Every pretopological convergence satisfies the star property, so that $Pre Top$ is a full reflective subcategory of the category $Ps Top$ of [[pseudotopological spaces]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} Every [[topological space]] is a pretopological space, using the usual definition of (not necessarily open) neighbourhood: $x \stackrel{\circ}\in U$ if there exists some open set $G$ such that $x \in G$ and $G \subseteq U$. Also, a map between topological spaces is continuous if and only if it's continuous as a map between pretopological spaces. In this way, the category [[Top]] of topological spaces becomes a full subcategory of $Pre Top$. In fact, we can easily characterise the topological pretopologies, allowing us to define a topological space as a pretopological space satisfying this axiom: \begin{itemize}% \item If $U$ is a set, then let $\stackrel{\circ}U$ be the set of all points that $U$ is a neighbourhood of. Then $\stackrel{\circ}U$ is a neighbourhood of each of its members. That is,\begin{displaymath} x \stackrel{\circ}\in U \;\Rightarrow\; x \stackrel{\circ}\in \{ y \;|\; y \stackrel{\circ}\in U \} . \end{displaymath} \end{itemize} In the terms defined below, a topological space is a pretopological space in which every preinterior is open. Here is an example of a nontopological pretopological space, although admittedly it is a bit artificial. (This is based on Section 15.6 of [[HAF]].) Consider a [[metric space]] $S$; according to the usual pretopology on $S$, $U$ is a neighbourhood of $x$ if there is a positive number $\epsilon$ such that $U$ contains the ball $\{ y \;|\; d(x,y) \lt \epsilon \}$. Now given a [[natural number]] $n$, we will give $S^n$ the \emph{plus pretopology}: $U$ is a neighbourhood of $\vec{x} = (x_1,\ldots,x_n)$ if there is a positive number $\epsilon$ such that $U$ contains the $l^0$-ball $\{ \vec{y} \;|\; \inf_i d(x_i,y_i) \lt \epsilon \}$. (If $S$ is a line and $n = 2$, then this neighbourhood is a plus sign `+' with $(x_1,x_2)$ at the centre and cross bars of length $2 \epsilon$.) Then $S^n$ is a pretopological space, but it is topological only if $n \leq 1$ or $S$ is a [[subsingleton]]. This example can probably be generalised to a [[uniform space]] $S$. Possibly there is some interesting universal property of this `plus product', although it seems to go from $Unif \times Unif$ to $Pre Top$, so maybe we need to work in a different category. (There is a notion of [[uniform convergence space]] that generalises uniform spaces much like convergence spaces generalise topological spaces; perhaps the plus product takes place there.) \hypertarget{topological_structure}{}\subsection*{{Topological structure}}\label{topological_structure} Fix a pretopological space $S$. The \textbf{preinterior} of a set $A$ is the set $\stackrel{\circ}A$ or $A^\circ$ of all points that $A$ is a neighbourhood of: \begin{displaymath} \stackrel{\circ}A = \{ x \;|\; x \stackrel{\circ}\in A \} . \end{displaymath} A set $A$ is \textbf{open} if it equals its preinterior. The \textbf{interior} $Int(A)$ of $A$ is the union of all of the open sets contained in $A$. Note that we can immediately recover the pretopological structure from the preinterior operation (but not from the interior operation nor from the class of all open sets). Similarly, the \textbf{preclosure} of $A$ is the set $\bar{A}$ of all points that $A$ meets every neighbourhood of: \begin{displaymath} \{ x \;|\; \forall{U},\; x \stackrel{\circ}\in U \;\Rightarrow\; A \cap U \neq \empty \} . \end{displaymath} A set $A$ is \textbf{closed} if it equals its preclosure. The \textbf{closure} $Cl(A)$ of $A$ is the intersection of all of the closed sets containing $A$. Again, we can recover the pretopological structure from the preclosure operation; $x \stackrel{\circ}\in U$ iff $U$ meets every set $A$ such that $x \in \bar{A}$. (This result seems to require [[excluded middle]].) (Warning: not all references use these terms in the same way. This terminology is based on the premise that a closure should be closed.) The duality between (pre)interiors and open sets on the one hand and (pre)closures and closed sets on the other hand is (at least if you assume [[excluded middle]]) just what you would expect: the (pre)interior of a [[complement]] is the complement of the (pre)closure, and a set is open if and only if its complement is closed. However, a preinterior is generally not open but larger than an interior; similarly, a preclosure is generally not closed but smaller than a closure. The situation looks like this: \begin{displaymath} A \supseteq \stackrel{\circ}A \supseteq (\stackrel{\circ}A)^{\circ} \supseteq \cdots \supseteq Int(A) , \end{displaymath} and \begin{displaymath} A \subseteq \bar{A} \subseteq \overline{\bar{A}} \subseteq \cdots \subseteq Cl(A) . \end{displaymath} In many cases this iteration stabilizes after finitely many terms. The plus power $S^n$ seems to stabilise after $n$ iterations. And in a topological space, of course, it only takes one step. In general, however, there can be transfinitely many terms in these sequences. For example, let $\Omega$ be any [[ordinal number]] (thought of as the [[well-ordered set]] of all smaller ordinal numbers) with the following pretopology: \begin{itemize}% \item $0 \stackrel{\circ}\in U$ iff $U = \Omega$. \item $\alpha \stackrel{\circ}\in U$, where $\alpha \lt \Omega$ is a nonzero ordinal, iff $[\beta,\Omega) \subseteq U$ for some $\beta \lt \alpha$. \end{itemize} Let $A=[1,\Omega)$. Then $\stackrel{\circ}A = [2,\Omega)$, $(\stackrel{\circ}A)^\circ = [3,\Omega)$, and so on, the process taking $\Omega$ steps to stabilize at $Int(A)=\emptyset$. Note that an interior is open, and a closure is closed. Indeed, the open sets in $S$ form a topological structure on $S$, giving the usual meanings of interior, closure, and closed set. This topological structure does \emph{not} (in general) give the original pretopology on $S$; instead, this makes $Top$ a [[reflective subcategory]] of $Pre Top$. In the definition of pretopology, the neighbourhoods of each point may be given completely independently of any other point. So the notion of topological space may also be seen as requiring some coherence between the neighbourhoods of nearby points. [[!redirects pretopological space]] [[!redirects pretopological spaces]] [[!redirects pre-topological space]] [[!redirects pre-topological spaces]] [[!redirects preinterior]] [[!redirects preinteriors]] [[!redirects pre-interior]] [[!redirects pre-interiors]] [[!redirects preclosure]] [[!redirects preclosures]] [[!redirects pre-closure]] [[!redirects pre-closures]] \end{document}