\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{prime ideal} \hypertarget{prime_ideals}{}\section*{{Prime ideals}}\label{prime_ideals} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \emph{Prime ideals} are supposed to be a generalization of [[prime numbers]] from elements of the [[ring]] of [[integers]] to [[ideals]] in the sense of `ideal elements' of an arbitrary [[ring]] (usually [[commutative ring|commutative]], but also possibly something more general than a ring). It's not clear that they do so; [[maximal ideals]] may do a better job. (In particular, [[zero]] is \emph{not} a prime number, and the [[zero ideal]] of $\mathbb{Z}$ is not a maximal ideal either; however, it \emph{is} a prime ideal.) Nevertheless, they have assumed an importance that dwarfs any question of original motivation; indeed, the general definition of [[prime element]] follows prime ideals rather than prime numbers. (An element of a ring is prime iff its [[principal ideal]] is prime; $0$ is a prime element of $\mathbb{Z}$ but not a prime number.) \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} \begin{defn} \label{rig}\hypertarget{rig}{} Let $R$ be a [[rig]] (assumed unital and associative as usual), and let $P$ be a [[two-sided ideal]] in $R$. Then $P$ is \textbf{prime} if $P$ is [[proper ideal|proper]] and $x$ or $y$ belongs to $P$ whenever $x a y$ does for all $a$: \begin{displaymath} \forall\, x \in R,\; \forall\, y \in R,\; (\forall\, a \in R,\; x a y \in P) \;\Rightarrow\; x \in P \;\vee\; y \in P . \end{displaymath} Also, $P$ is \textbf{completely prime} if $P$ is proper and $x$ or $y$ belongs to $P$ whenever $x y$ does: \begin{displaymath} \forall\, x \in R,\; \forall\, y \in R,\; x y \in P \;\Rightarrow\; x \in P \;\vee\; y \in P . \end{displaymath} \end{defn} Note that every completely prime ideal is prime (using that $R$ is unital). The converse holds if the rig is commutative (using that $P$ is an ideal). So in [[commutative algebra]] one usually uses the (simpler) definition of completely prime ideal as the definition of prime ideal: \begin{defn} \label{commrig}\hypertarget{commrig}{} Let $R$ be a [[commutative ring|commutative]] rig, and let $P$ be an [[ideal]] in $R$. Then $P$ is \textbf{prime} if $P$ is [[proper ideal|proper]] and $x$ or $y$ belongs to $P$ whenever $x y$ does: \begin{displaymath} \forall\, x \in R,\; \forall\, y \in R,\; x y \in P \;\Rightarrow\; x \in P \;\vee\; y \in P . \end{displaymath} \end{defn} Essentially the same definition applies in [[order theory]], using the analogy (which is more than an analogy in the case of a [[distributive lattice]]) between multiplication in a rig and the [[meet]] in an order: \begin{defn} \label{lattice}\hypertarget{lattice}{} Let $R$ be a [[lattice]], and let $P$ be an [[ideal]] in $R$. Then $P$ is \textbf{prime} if $P$ is [[proper ideal|proper]] and $x$ or $y$ belongs to $P$ whenever their meet does: \begin{displaymath} \forall\, x \in R,\; \forall\, y \in R,\; x \wedge y \in P \;\Rightarrow\; x \in P \;\vee\; y \in P . \end{displaymath} \end{defn} There is an infinitary version of this that is called `complete' but is \emph{not} equivalent to the notion in Definition \ref{rig} of a completely prime ideal from the noncommutative theory: \begin{defn} \label{complattice}\hypertarget{complattice}{} Let $R$ be a [[complete lattice]], and let $P$ be an [[ideal]] in $R$. Then $P$ is \textbf{completely prime} if some element belongs to $P$ whenever the meet of a subset of $R$ does: \begin{displaymath} \forall\, X \subseteq R,\; \bigwedge X \in P \;\Rightarrow\; \exists\, x \in R,\; x \in X \;\wedge\; x \in P . \end{displaymath} \end{defn} With a little sublety, this makes sense even when [[meets]] (and [[joins]]) don't always exist: \begin{defn} \label{preorder}\hypertarget{preorder}{} Let $R$ be a [[preorder]], and let $P$ be an ideal in $R$. Then $P$ is \textbf{prime} if $P$ is [[proper ideal|proper]] and $x$ or $y$ belongs to $P$ whenever every $z$ that precedes both $x$ and $y$ does: \begin{displaymath} \forall\, x \in R,\; \forall\, y \in R,\; (\forall\, z \in R,\; z \leq x \;\Rightarrow\; z \in P) \;\Rightarrow\; (\forall\, z \in R,\; z \leq y \;\Rightarrow\; z \in P) \;\Rightarrow\; x \in P \;\vee\; y \in P . \end{displaymath} Also, $P$ is \textbf{completely prime} if $P$ if some element belongs to $P$ whenever every $z$ that precedes every element of a subset of $R$ does: \begin{displaymath} \forall\, X \subseteq R,\; (\forall\, z \in R,\; (\forall\, x \in R,\; x \in X \;\Rightarrow\; z \leq x) \;\Rightarrow\; z \in P) \;\Rightarrow\; \exists\, x \in R,\; x \in X \;\wedge\; x \in P . \end{displaymath} \end{defn} Note that a [[prime filter]] in a proset $R$ is a prime ideal in the [[opposite order]] $R^op$, and a [[completely prime filter]] in $R$ is a completely prime ideal in $R^op$. Again, the meaning of `completely prime' here is unrelated to its meaning in Definition \ref{rig}. All of these definitions may be justified by looking at the [[quantale]] of ideals. As discussed at [[ideals in a monoid]], there is for two-sided ideals an operation of ideal multiplication, making the [[lattice of ideals|ideal lattice]] $Idl(R)$ a quantale (cf. [[Day convolution]]). Namely, if $I, J$ are ideals, then their product $I J$ is the ideal generated by all products $x y$ with $x \in I, y \in J$ in the case of rigs, or generated by all meets $x \wedge y$ in the case of lattices, or generated by all $z$ satisfying $z \leq x$ and $z \leq y$ in the case of general prosets. (Note that for a lattice or other proset, $I J$ is equal to the [[intersection]] $I \cap J$.) With $I J$ suitably defined, every definition above (except the `complete' ones) can be subsumed below: \begin{defn} \label{universal}\hypertarget{universal}{} Let $R$ be a rig or a proset, and let $P$ be an ideal in $R$. Then $P$ is \textbf{prime} if $P$ is [[proper ideal|proper]] and $I$ or $J$ is contained in $P$ whenever $I J$ is: \begin{displaymath} \forall\, I \in Idl(R),\; \forall\, J \in Idl(R),\; I J \subseteq P \;\Rightarrow\; I \subseteq P \;\vee\; J \subseteq P . \end{displaymath} \end{defn} Because $I J = I \cap J$ in order theory, prime ideals there are the same as [[strongly irreducible ideals]], so the completely prime ideals of that theory are really just [[completely strongly irreducible ideals]] (generalizing from a pair of ideals to an arbitrary set of ideals). In contrast, the completely prime ideals of noncommutative ring theory are not of much interest; they are a naïve definition that works in the commutative case but not so well in the noncommutative case. Finally, note that most of these definitions have an extra clause that a prime ideal must be [[proper ideal|proper]]. This can be justified by removing [[bias]]. We state here the unbiased version of \ref{universal}: \begin{defn} \label{unbiased}\hypertarget{unbiased}{} Let $R$ be a rig or a proset, and let $P$ be an ideal in $R$. Then $P$ is \textbf{prime} if some ideal in the list is contained in $P$ whenever a product of a [[finite list]] of ideals is contained in $P$: \begin{displaymath} \forall\, n \in \mathbb{N},\; \forall\, I \in Idl(R)^n,\; \prod_{k\in[n]} I_k \subseteq P \;\Rightarrow\; \exists\, k \in [n],\; I_k \subseteq P . \end{displaymath} \end{defn} As is typical, $n = 1$ is trivial, $n \gt 2$ can be proved from $n = 2$ by [[induction]], and $n = 0$ is the mysterious preliminary clause, in this case that $P$ is proper. Note that completely prime ideals in a proset arise by generalizing from finite $n$ to arbitrary [[cardinality]]. Unbiased versions of the other definitions are fairly straightforward. (For prime ideals in a noncommutative rig, the unbiased definition involves a product of the form $a_0 x_0 a_1 x_1 \cdots x_{n-2} a_{n-1} x_{n-1} a_n$; $a_0$ and $a_n$ can be ignored when $n \gt 0$, which is why only $a_1$ appears in the biased definition. The definition of completely prime ideals in order theory is already unbiased, since $X$ could always be the [[empty set]].) Sometimes it's more fruitful to consider the [[complement]] of a prime ideal. This is known in [[constructive mathematics]] as an [[anti-ideal]], and this becomes a necessary perspective there, as many common examples fail to satisfy the above definitions constructively. (To support anti-ideals, a rig must be equipped with a [[tight apartness relation]], which is vacuous in [[classical mathematics]].) However, the concept is useful even classically. \begin{defn} \label{constructive}\hypertarget{constructive}{} Let $R$ be a [[algebra with apartness|rig with apartness]], and let $M$ be a two-sided [[anti-ideal]] in $R$. Then $M$ is \textbf{prime} if $M$ is [[proper antiideal|proper]] (that is [[inhabited subset|inhabited]]) and $x a y$ belongs to $M$ for some $a$ whenever $x$ and $y$ do: \begin{displaymath} \forall\, x \in R,\; \forall\, y \in R,\; x \in M \;\Rightarrow\; y \in M \;\Rightarrow\; \exists\, a \in R,\; x a y \in M . \end{displaymath} Also, $M$ is \textbf{completely prime} if $M$ is proper and $x y$ belongs to $M$ whenever $x$ and $y$ do: \begin{displaymath} \forall\, x \in R,\; \forall\, y \in R,\; x \in M \;\Rightarrow\; y \in M \;\Rightarrow\; x y \in M . \end{displaymath} \end{defn} If we ignore the requirement that $M$ be an anti-ideal, then we say that $M$ is an \textbf{m-system} if it is inhabited and satisfies the binary condition of a prime ideal and \textbf{multiplicatively closed} if it owns $1$ and satisfies the binary condition of a completely prime ideal. (A proper anti-ideal necessarily owns $1$, but an m-system might not, even though by definition it must be inhabited.) Thus, an ideal in a commutative ring is (classically) prime iff its complement is multiplicatively closed (and analogously for noncommutative rings). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} In a [[matrix ring]] $M_n(k)$ over a [[field]] $k$, the [[zero ideal]] is prime (really because a matrix ring is a [[simple ring]], where the zero ideal is a [[maximal ideal]]), but (for $n \gt 1$) not \emph{completely} prime. In the [[ring of integers]] (or the rig of [[natural numbers]]), the prime ideals are precisely the [[principal ideals]] of the [[prime numbers]] together with the [[zero ideal]]. (This is the motivating example, despite not lining up perfectly.) [[!redirects prime ideal]] [[!redirects prime ideals]] [[!redirects completely prime ideal]] [[!redirects completely prime ideals]] \end{document}