\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{principal 2-bundle} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{bundles}{}\paragraph*{{Bundles}}\label{bundles} [[!include bundles - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{Classification}{Classification}\dotfill \pageref*{Classification} \linebreak \noindent\hyperlink{connections}{Connections}\dotfill \pageref*{connections} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{tfolds}{T-Folds}\dotfill \pageref*{tfolds} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{principal 2-bundle} is the generalization of a $G$-[[principal bundle]] over a [[group]] $G$ to a principal structure over a [[2-group]]. It is a special case of a [[principal ∞-bundle]]. For $G = AUT(H)$ the [[automorphism 2-group]] of a group $H$, $G$-principal bundles are equivalent to $H$-[[gerbe]] (see [[gerbe (general idea)]] for more background.). An $H$-[[nonabelian bundle gerbe]] is a model for the total space of an $AUT(H)$-principal 2-bundle. An expository introduction to the concepts is at [[infinity-Chern-Weil theory introduction]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} For $G$ a topological [[Lie 2-group]], a topological or smooth \textbf{$G$-principal 2-bundle} $P \to X$ is a topological or [[Lie groupoid]] that arises as the [[homotopy fiber]] of a [[cocycle]] $X \to \mathbf{B}G$ in [[ETop∞Grpd]] or [[Smooth∞Grpd]], respectively, i.e. as an [[(∞,1)-pullback]] of the form \begin{displaymath} \itexarray{ P &\to& * \\ \downarrow &\swArrow_{\simeq}& \downarrow \\ X &\to& \mathbf{B}G } \,. \end{displaymath} By the general rules of [[homotopy pullbacks]], this may be modeled by an ordinary pullback of topological or [[Lie 2-groupoid]]s of the form \begin{displaymath} \itexarray{ P &\to& \mathbf{E}G \\ \downarrow && \downarrow \\ C(U) &\to& \mathbf{B}G \\ \downarrow^{\mathrlap{\simeq}} \\ X } \,, \end{displaymath} where $C(U)$ is the [[Cech nerve]] of a [[good open cover]] $U \to X$ and where $\mathbf{E}G$ is the [[universal principal infinity-bundle|universal principal 2-bundle]] (\hyperlink{RS}{RS}). This says that principal 2-bundles are classified by [[Cech cohomology]] with coefficients in [[delooping]]s of (sheaves of) [[2-group]]s. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{Classification}{}\subsubsection*{{Classification}}\label{Classification} \begin{theorem} \label{}\hypertarget{}{} Let $G$ be a [[well-pointed simplicial topological group|well pointed topological 2-group]]. Write $\mathbf{B}G := \bar W G$ for its [[delooping]] [[simplicial topological space]] and \begin{displaymath} B G := \vert \mathbf{B}G\vert \in Top \end{displaymath} for the corresponding [[geometric realization of simplicial topological spaces]]. Then $B G$ is a classifying space for topological $G$-principal 2-bundles: for $X$ a (sufficiently nice\ldots{}) [[topological space]] we have that the [[nonabelian cohomology|nonabelian]] [[Cech cohomology]] on $X$ with coefficients in $\mathbf{B}G$ is naturally in bijections with the set of [[homotopy]] classes of [[continuous function]]s $X \to B G$ \begin{displaymath} H_{Top}(X, \mathbf{B}G) \simeq [X, B G] \,. \end{displaymath} \end{theorem} This appears as (\hyperlink{BaezStevenson}{BaezStevenson, theorem 1}). It is also a special case of the analogous theorem for topological [[principal infinity-bundles]] in (\hyperlink{RobertsStevenson}{RobertsStevenson}). \begin{theorem} \label{}\hypertarget{}{} Let $G$ be a [[Lie 2-group]] with the property that $\pi_0 G$ is a [[smooth manifold]] and the projection $G_0 \to \pi_0 G$ is a [[submersion]]. Then equivalence classes of smooth $G$-principal bundles on a [[smooth manifold]] $X$ are in natural bijection with equivalence classes of topological $G$-principal 2-bundles (regarding $G$ as a topological 2-group) \begin{displaymath} H_{Top}(X, \mathbf{B}G) \simeq H_{smooth}(X, \mathbf{B}G) \end{displaymath} induced by the natural [[forgetful functor]] [[SmoothMfd]] $\to$ [[Top]]. \end{theorem} This appears as (\hyperlink{NikolausWaldorf11}{Nikolaus-Waldorf 11, prop. 4.1}). \begin{cor} \label{}\hypertarget{}{} For [[Lie 2-group]]s with the above property, also smooth $G$-principal 2-bundles have [[classifying space]] $B G = \vert \mathbf{B}G\vert$. \end{cor} \hypertarget{connections}{}\subsection*{{Connections}}\label{connections} An ordinary [[principal bundle]] may be equipped with a [[connection on a bundle|connection]] by refining the cocycle \begin{displaymath} X \to \mathbf{B} G \end{displaymath} to a cocycle \begin{displaymath} P_1(X) \to \mathbf{B} G \end{displaymath} where $P_1(X)$ is the [[path groupoid]] of $X$. Similarly, 2-bundles may be equipped with connections by refining their cocycles $X \to \mathbf{B}H$ to cocycles out of a higher path groupoid. Details on this are at [[schreiber:differential cohomology in a cohesive topos]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{tfolds}{}\subsubsection*{{T-Folds}}\label{tfolds} Principal 2-bundles for the [[T-duality 2-group]] serve to model [[T-folds]] in [[string theory]] (\hyperlink{NikolausWaldorf18}{Nikolaus-Waldorf 18}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[principal bundle]] / [[torsor]] / [[associated bundle]] \item \textbf{principal 2-bundle} / [[gerbe]] / [[bundle gerbe]] \begin{itemize}% \item [[principal 2-connection]] \item [[central extension of groupoids]] \item [[line 2-bundle]] \end{itemize} \item [[principal 3-bundle]] / [[2-gerbe]] / [[bundle 2-gerbe]] \item [[principal ∞-bundle]] / [[associated ∞-bundle]] / [[∞-gerbe]] \begin{itemize}% \item [[circle n-bundle with connection]] \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The general description of higher bundles internal to generalized spaces modeled as [[∞-stacks]] is discussed in \begin{itemize}% \item Jardine, \emph{Cocycle categories} (\href{http://arxiv.org/abs/math.AT/0605198}{pdf}) . \end{itemize} The above situation of ordinary $G$-[[principal bundles]] is section 2.1 \emph{[[torsor|Torsors]] for [[sheaves]] of groups} in that article. The generalization to principal 2-bundles and [[principal ∞-bundles]] is then briefly indicated in section 2.2, \emph{Diagrams and torsors} . The point is that in the [[(∞,1)-topos]] of topological or smooth or whatever [[∞-groupoids]] (i.e. in the [[(∞,1)-category]] of [[∞-stacks]] on our category of [[space and quantity|test spaces]]) the above situation generalizes straightforwardly: For $G$ a [[2-group]], a $G$-principal $2$-bundle is a fibration of groupoids $P \to X$ that arises as the [[fibration sequence|homotopy fiber]] of a classifying morphism $X \to \mathbf{B}G$ (a $2$-[[2-anafunctor|anafunctor]]) \begin{displaymath} \itexarray{ P &\to& {*} \\ \downarrow && \downarrow \\ X &\to& \mathbf{B}G } \,. \end{displaymath} This may be modeled by the pullback of the [[universal principal infinity-bundle|universal principal 2-bundle]] as described in \begin{itemize}% \item [[Urs Schreiber]], [[David Roberts]], \emph{The inner automorphism 3-group of a strict 2-group} (\href{http://arxiv.org/abs/0708.1741}{arXiv}) \end{itemize} As ordinary [[principal bundles]], the gadgets obtained this way may be described from various points of view, using [[anafunctor]] cocycles $g : X \stackrel{\simeq}{\to}\leftarrow Y \to \mathbf{B}H$ in [[nonabelian cohomology]], or the corresponding total spaces being 2-[[torsors]] equipped with 2-group [[action]], or certain variants of this. Maybe the earliest explicit description of a principal $\infty$-bundle using a [[geometric definition of higher category]] is \begin{itemize}% \item P. Glenn, \emph{Realization of cohomology classes in arbitrary exact categories}, J. Pure Appl. Algebra 25, 1982, no. 1, 33- 105. \end{itemize} This describes [[torsors]] over [[∞-groupoids]] in terms of the corresponding $\infty$-[[action groupoids]]. This theory of higher bundles and [[gerbes]] was made to look manifestly like a systematic [[vertical categorification|categorification]] of the familiar description of ordinary [[principal bundles]] in terms of cocycles and local trivializations in \begin{itemize}% \item Luca Mauri, PhD thesis, 1998 (\href{http://home.aubg.bg/faculty/aganchev/Category%20Theory/Mauri%20%28papers%29/mauri-2.pdf}{pdf}); \end{itemize} An abridged version is \begin{itemize}% \item L. Mauri, M. Tierney, \emph{Two-descent, two-torsors and local equivalence} , J. Pure Appl. Algebra 143 (1999), 313--327. \end{itemize} The first article in the differential-geometric context was \begin{itemize}% \item [[Toby Bartels]], \emph{2-Bundles} (\href{http://arxiv.org/abs/math.CT/0410328}{arXiv}, \href{http://toby.bartels.name/2bundles/}{web}) \end{itemize} One should notice that if one uses categories internal to [[diffeological spaces]], then these are (under their [[nerve]]) in particular [[simplicial presheaf|simplicial presheaves]], and that the [[anafunctors]] used as morphisms between these simplicial presheaves represent precisely the morphisms the corresponding [[(∞,1)-category of (∞,1)-sheaves]] using the [[model structure on simplicial presheaves]] or, more lightweight, the structure of a Brown [[category of fibrant objects]] on $\infty$-groupoid valued sheaves. A description of higher principal bundles (see also [[principal ∞-bundle]]) in terms of the [[model structure on simplicial presheaves]] appears in \begin{itemize}% \item Jardine, Luo, \emph{Higher order principal bundles} (\href{http://www.math.uiuc.edu/K-theory/0681/cocycles6.pdf}{pdf}) \end{itemize} The relation of such 2-categorical constructions of 2-bundles to the one of simplicially modeled $\infty$-bundles by Glenn was established in \begin{itemize}% \item [[Igor Bakovic]], \emph{Bigroupoid 2-torsors} (\href{http://edoc.ub.uni-muenchen.de/9209/1/Bakovic_Igor.pdf}{pdf}). \end{itemize} Still more explicit descriptions of these constructions are given in \begin{itemize}% \item Christoph Wockel, \emph{A global perspective to gerbes and their gauge stacks} (\href{http://arxiv.org/abs/0803.3692}{arXiv}) . \end{itemize} These constructions either work internal to [[Diff]] or internal to some [[topos]]. More generally, a principal 2-bundle is a ([[n-truncated object of an (infinity,1)-category|2-truncated]] [[principal ∞-bundle]]) in a [[(∞,1)-topos]] of [[∞-stack]]s over some [[site]]. This is for instance in \begin{itemize}% \item [[Behrang Noohi]], E. Aldrovandi, \emph{Butterflies II: Torsors for 2-group stacks},\href{http://arxiv.org/abs/0910.1818}{arXiv} \end{itemize} Notice that [[torsor]] is just another word for (internal) [[principal bundle]]. Classification results of principal 2-bundles are in \begin{itemize}% \item [[John Baez]], [[Danny Stevenson]], \emph{The classifying space of a topological 2-group} Algebraic Topology Abel Symposia, 2009, Volume 4, 1-31 (\href{http://arxiv.org/abs/0801.3843}{arXiv:0801.3843}) \end{itemize} \begin{itemize}% \item [[David Roberts]], [[Danny Stevenson]], \emph{Simplicial principal bundles in parametrized spaces} () \end{itemize} An extensive discussion of various models of principal 2-bundles is in \begin{itemize}% \item [[Thomas Nikolaus]], [[Konrad Waldorf]], \emph{Four Equivalent Versions of Non-Abelian Gerbes} (\href{http://arxiv.org/abs/1103.4815}{arXiv:1103.4815}) \end{itemize} For a comprehensive account in the general context of [[principal infinity-bundles]] see \begin{itemize}% \item [[Thomas Nikolaus]], [[Urs Schreiber]], [[Danny Stevenson]], \emph{[[schreiber:Principal ∞-bundles -- theory, presentations and applications]]} (\href{http://arxiv.org/abs/1207.0248}{arXiv:1207.0248}, \href{http://arxiv.org/abs/1207.0249}{arXiv:1207.0249}) \end{itemize} For more references see at \emph{[[principal 2-connection]]}. The example for structure group the [[T-duality 2-group]] is discussed, as a formalization of [[T-folds]], in \begin{itemize}% \item [[Thomas Nikolaus]], [[Konrad Waldorf]], \emph{Higher geometry for non-geometric T-duals} (\href{https://arxiv.org/abs/1804.00677}{arXiv:1804.00677}) \end{itemize} [[!redirects principal 2-bundles]] \end{document}