\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{principal infinity-bundle} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{bundles}{}\paragraph*{{Bundles}}\label{bundles} [[!include bundles - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{GeneralPrincBund}{$G$-principal $\infty$-bundles}\dotfill \pageref*{GeneralPrincBund} \linebreak \noindent\hyperlink{connections_on_principal_bundles}{Connections on $G$-principal $\infty$-bundles}\dotfill \pageref*{connections_on_principal_bundles} \linebreak \noindent\hyperlink{concrete_realizations}{Concrete realizations}\dotfill \pageref*{concrete_realizations} \linebreak \noindent\hyperlink{in_topological_spaces}{In topological spaces}\dotfill \pageref*{in_topological_spaces} \linebreak \noindent\hyperlink{in_simplicial_sets__kan_complexes}{In simplicial sets / Kan complexes}\dotfill \pageref*{in_simplicial_sets__kan_complexes} \linebreak \noindent\hyperlink{in_a_petit_topos}{In a petit $(\infty,1)$-topos}\dotfill \pageref*{in_a_petit_topos} \linebreak \noindent\hyperlink{in_a_gros_topos}{In a gros $(\infty,1)$-topos}\dotfill \pageref*{in_a_gros_topos} \linebreak \noindent\hyperlink{smooth_principal_bundles}{Smooth principal $\infty$-bundles}\dotfill \pageref*{smooth_principal_bundles} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{ordinary_principal_bundles}{Ordinary principal bundles}\dotfill \pageref*{ordinary_principal_bundles} \linebreak \noindent\hyperlink{circle_bundles}{Circle $n$-bundles}\dotfill \pageref*{circle_bundles} \linebreak \noindent\hyperlink{bundle_gerbes}{Bundle gerbes}\dotfill \pageref*{bundle_gerbes} \linebreak \noindent\hyperlink{normal_morphisms_of_groups}{Normal morphisms of $\infty$-groups}\dotfill \pageref*{normal_morphisms_of_groups} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of \emph{principal $\infty$-bundle} is a [[vertical categorification|categorification]] of [[principal bundle]] from [[groups]] and [[groupoids]] to [[∞-groupoids]], or rather from parameterized groupoids (generalized spaces called [[stacks]]) to parameterized $\infty$-groupoids (generalized spaces called [[∞-stacks]]). For motivation, background and further details see \begin{itemize}% \item [[motivation for sheaves, cohomology and higher stacks]] \item [[principal bundle]] \item [[gerbe]] \item [[principal 2-bundle]]. \end{itemize} A model for principal $\infty$-bundles is given by \begin{itemize}% \item [[simplicial principal bundle]]s. \end{itemize} See also \begin{itemize}% \item [[universal principal ∞-bundle]] \item [[groupal model for universal principal ∞-bundles]]. \end{itemize} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} We define $G$-principal $\infty$-bundles in the general context of an [[∞-stack]] [[(∞,1)-topos]] $\mathbf{H}$, with $G$ a [[groupoid object in an (∞,1)-category|group object in the (∞,1)-topos]]. Recall that for $A \in \mathbf{H}$ an object equipped with a point $pt_A : {*} \to A$, its corresponding [[loop space object]] $\Omega A$ is the [[homotopy pullback]] \begin{displaymath} \itexarray{ \Omega A &\to& {*} \\ \downarrow && \downarrow \\ {*} &\to& A } \,. \end{displaymath} Conversely, for $G \in \mathbf{H}$ we say an object $\mathbf{B}G$ is a [[delooping]] of $G$ if it has an essentially unique point and if $G \simeq \Omega \mathbf{B}G$. We call $G$ an \textbf{[[∞-group]]}. More in detail, its structure as a [[groupoid object in an (∞,1)-category|group object in an (∞,1)-category]] is exhibited by the [[?ech nerve]] \begin{displaymath} \left( \itexarray{ &\cdots& {*} \times_{\mathbf{B}G} {*} \times_{\mathbf{B}G} {*} &\stackrel{\to}{\stackrel{\to}{\to}}& {*} \times_{\mathbf{B}G} {*} &\stackrel{\to}{\to}& {*} } \right) \simeq \left( \itexarray{ &\cdots& G \times G &\stackrel{\to}{\stackrel{\to}{\to}}& G &\stackrel{\to}{\to}& {*} } \right) \end{displaymath} of ${*} \to \mathbf{B}G$. \hypertarget{GeneralPrincBund}{}\subsubsection*{{$G$-principal $\infty$-bundles}}\label{GeneralPrincBund} To every cocycle $g : X \to \mathbf{B}G$ is canonically associated its [[homotopy fiber]] $P \to X$, the [[(∞,1)-pullback]] \begin{displaymath} \itexarray{ P &\to& {*} \\ \downarrow && \downarrow \\ X &\stackrel{g}{\to}& \mathbf{B}G \,. } \,. \end{displaymath} We discuss now that $P$ canonically has the structure of a $G$-[[principal ∞-bundle]] and that $\mathbf{B}G$ is the [[fine moduli space]] for $G$-principal $\infty$-bundles. \begin{defn} \label{}\hypertarget{}{} \textbf{(principal $G$-action)} Let $G$ be a [[groupoid object in an (∞,1)-category|group object in the (∞,1)-topos]] $\mathbf{H}$. A \textbf{principal [[action]]} of $G$ on a morphism $(P \to X) \in \mathbf{H}$ is a [[groupoid object in an (∞,1)-category|groupoid object]] $P//G$ that sits over $*//G$ in that we have a morphism of [[simplicial object|simplicial diagram]]s $\Delta^{op} \to \mathbf{H}$ \begin{displaymath} \itexarray{ \vdots && \vdots \\ P \times G \times G &\stackrel{(p_2, p_3)}{\to}& G \times G \\ \downarrow\downarrow\downarrow && \downarrow\downarrow\downarrow \\ P \times G &\stackrel{p_2}{\to}& G \\ \downarrow\downarrow && \downarrow\downarrow \\ P &\stackrel{}{\to}& {*} } \end{displaymath} in $\mathbf{H}$; and such that $P \to X$ exhibits the [[(∞,1)-colimit]] \begin{displaymath} X \simeq \lim_\to (P//G : \Delta^{op} \to \mathbf{H}) \end{displaymath} called the \textbf{base space} over which the action takes place. \end{defn} We may think of $P//G$ as the \textbf{[[action groupoid]]} of the $G$-action on $P$. For us it \emph{defines} this $G$-action. \begin{prop} \label{}\hypertarget{}{} The $G$-principal action as defined above satisfies the \textbf{principality condition} in that we have an equivalence of groupoid objects \begin{displaymath} \itexarray{ \vdots && \vdots \\ P \times_X P \times_X P &\stackrel{\simeq}{\to}& P \times G \times G \\ \downarrow\downarrow\downarrow && \downarrow\downarrow\downarrow \\ P \times_X P &\stackrel{\simeq}{\to}& P \times G \\ \downarrow\downarrow && \downarrow\downarrow \\ P &\stackrel{\simeq}{\to}& P } \,. \end{displaymath} \end{prop} \begin{proof} This principality condition asserts that the groupoid object $P//G$ is [[groupoid object in an (infinity,1)-category|effective]]. By [[(∞,1)-topos|Giraud's axioms characterizing (∞,1)-toposes]], every groupoid object in $\mathbf{H}$ is effective. \end{proof} \begin{uprop} For $X \to \mathbf{B}G$ any morphism, its [[homotopy fiber]] $P \to X$ is canonically equipped with a principal $G$-action with base space $X$. \end{uprop} \begin{proof} First we show that we have a morphism of simplicial diagrams \begin{displaymath} \itexarray{ \vdots && \vdots && \vdots \\ P \times_X P \times_X P &\stackrel{\simeq}{\to}& P \times G \times G &\to& G \times G \\ \downarrow\downarrow\downarrow && \downarrow\downarrow\downarrow && \downarrow\downarrow\downarrow \\ P \times_X P &\stackrel{\simeq}{\to}& P \times G &\stackrel{p_2}{\to}& G \\ \downarrow\downarrow && \downarrow\downarrow && \downarrow\downarrow \\ P &\stackrel{=}{\to}& P &\stackrel{}{\to}& {*} \\ \downarrow && \downarrow && \downarrow \\ X &\stackrel{=}{\to}& X &\stackrel{g}{\to}& \mathbf{B}G } \,, \end{displaymath} with the right square swhere the left horizontal morphisms are equivalences, as indicated. We proceed by induction through the height of this diagram. The defining [[(∞,1)-pullback]] square for $P \times_X P$ is \begin{displaymath} \itexarray{ P \times_X P &\to& P \\ \downarrow && \downarrow \\ P &\to& X } \end{displaymath} To compute this, we may attach the defining $(\infty,1)$-pullback square of $P$ to obtain the [[pasting]] diagram \begin{displaymath} \itexarray{ P \times_X P &\to& P &\to& {*} \\ \downarrow && \downarrow && \downarrow \\ P &\to& X &\to& \mathbf{B}G \,. } \end{displaymath} and use the \href{http://ncatlab.org/nlab/show/pullback#Pasting}{pasting law for pullbacks}, to conclude that $P \times_X P$ is the pullback \begin{displaymath} \itexarray{ P \times_X P &\to& &\to& {*} \\ \downarrow && && \downarrow \\ P &\to& X &\to& \mathbf{B}G \,. } \end{displaymath} By definition of $P$ as the homotopy fiber of $X \to \mathbf{B}G$, the lower horizontal morphism is equivbalent to $P \to {*} \to \mathbf{B}G$, so that $P \times_X P$ is also equivalent to the pullback \begin{displaymath} \itexarray{ P \times_X P &\to& &\to& {*} \\ \downarrow && && \downarrow \\ P &\to& {*} &\to& \mathbf{B}G \,. } \end{displaymath} This finally may be computed as the pasting of two pullbacks \begin{displaymath} \itexarray{ P \times_X P &\simeq& P \times G &\to& G &\to& {*} \\ &&\downarrow && \downarrow && \downarrow \\ &&P &\to& {*} &\to& \mathbf{B}G \,. } \end{displaymath} of which the one on the right is the defining one for $G$ and the remaining one on the left is just an [[(∞,1)-product]]. Proceeding by induction from this case we find analogously that $P^{\times_X^{n+1}} \simeq P \times G^{\times_n}$: suppose this has been shown for $(n-1)$, then the defining pullback square for $P^{\times_X^{n+1}}$ is \begin{displaymath} \itexarray{ P \times_X P^{\times_X^n} &\to& P \\ \downarrow && \downarrow \\ P^{\times_X^n}&\to& X } \,. \end{displaymath} We may again paste this to obtain \begin{displaymath} \itexarray{ P \times_X P^{\times_X^n} &\to& P &\to& * \\ \downarrow && \downarrow && \downarrow \\ P^{\times_X^n}&\to& X &\to& \mathbf{B}G } \end{displaymath} and use from the previous induction step that \begin{displaymath} (P^{\times_X^n} \to X \to \mathbf{B}G) \simeq (P^{\times_X^n} \to * \to \mathbf{B}G) \end{displaymath} to conclude the induction step with the same arguments as before. This shows that $P//G$ is the [[Cech nerve]] of $P \to X$. It remains to show that indeed $X = {\lim_\to}_n P \times G^{\times^n}$. For this notice that $* \to \mathbf{B}G$ is an [[effective epimorphism in an (infinity,1)-category]]. Hence so is $P \to X$. This proves the claim, by definition of effective epimorphism. using this we have \begin{displaymath} \begin{aligned} X & \simeq \mathbf{B}G \prod_{\mathbf{B}G} X \\ & \simeq \left({\lim_{\to}}_n G^{\times^n}\right) \prod_{\mathbf{B}G} X \\ & \simeq {\lim_{\to}}_n ( G^{\times^n} \prod_{\mathbf{B}G} X ) \\ & \simeq {\lim_\to}_n ( P\times G^{\times^n} ) \\ & \simeq {\lim_\to} P//G \end{aligned} \,. \end{displaymath} \end{proof} We have established that every [[cocycle]] $X \to \mathbf{B}G$ canonically induced a $G$-principal action on the homotopy fiber $P \to X$. The following definition declares the \emph{$G$-principal $\infty$-bundles} to be those $G$-principal actions that do arise this way. \begin{defn} \label{}\hypertarget{}{} We say a $G$-principal action of $G$ on $P$ over $X$ is a $G$-[[principal ∞-bundle]] if the colimit over $P//G \to *//G$ produces a pullback square: the bottom square in \begin{displaymath} \itexarray{ \vdots && \vdots \\ P \times G \times G &\to& G \times G \\ \downarrow\downarrow\downarrow && \downarrow\downarrow\downarrow \\ P \times G &\stackrel{p_2}{\to}& G \\ \downarrow\downarrow && \downarrow\downarrow \\ P &\stackrel{}{\to}& {*} \\ \downarrow && \downarrow \\ X = \lim_\to (P \times G^\bullet) &\stackrel{g}{\to}& \mathbf{B}G = \lim_\to( G^\bullet) } \,. \end{displaymath} \end{defn} \begin{defn} \label{}\hypertarget{}{} For $G$ an [[infinity-group]] in $\mathbf{H}$ and $X \in \mathbf{H}$ any object, write \begin{displaymath} G Bund(X) \subset Grpd(\mathbf{H})/{*//G} \end{displaymath} for the [[sub-(infinity,1)-category]] on the [[over-(infinity,1)-category]] of the groupoid objects over $*//G$ on the $G$-principal $\infty$-bundles as above. \end{defn} \begin{prop} \label{}\hypertarget{}{} We have an [[equivalence of (∞,1)-categories]] \begin{displaymath} G Bund(X) \simeq \mathbf{H}(X, \mathbf{B}G) \end{displaymath} of $G$-orincipal $\infty$-bundles over $X$ with [[cocycles]] $X \to \mathbf{B}G$. \end{prop} \begin{proof} The [[arrow category]] $\mathbf{H}^I$ is still an [[(infinity,1)-topos]] and hence the Griraud-Lurie axioms still hold. This means that by the discussion at [[groupoid object in an (infinity,1)-category]] (using the statement below [[Higher Topos Theory|HTT, cor. 6.2.3.5]]) we have an equivalence \begin{displaymath} Grpd(\mathbf{H}^I) \simeq (\mathbf{H}^{I})^{I}_{eff} \end{displaymath} between groupoid objects in $\mathbf{H}^I$ and [[effective epimorphism in an (infinity,1)-category|effective epimorphisms]] in the arrow category. Notice that groupoid objects and effective epis in $\mathbf{H}^I$ are given objectwise over the two objects of the inerval $I = \Delta[1]$. Restricting this equivalence along the inclusion \begin{displaymath} \mathbf{H}(X, \mathbf{B}G) \hookrightarrow (\mathbf{H}^I)^I \end{displaymath} given by sending a cocycle to its homotopy fiber diagram \begin{displaymath} (X \to \mathbf{B}G) \mapsto \left( \itexarray{ P &\to& * \\ \downarrow && \downarrow \\ X &\to& \mathbf{B}G } \right) \end{displaymath} therefore yields precisely the equivalence in question \begin{displaymath} \itexarray{ G Bund(X) &\hookrightarrow& Grpd(\mathbf{H}^I) \\ \downarrow^\simeq && \downarrow^\simeq \\ \mathbf{H}(X, \mathbf{B}G) &\stackrel{hofib}{\hookrightarrow}& (\mathbf{H}^I)^I } \,. \end{displaymath} \end{proof} In words this says that the [[cohomology]] on $X$ with coefficients in $G$ classified $G$-principal $\infty$-bundles, and in fact does so on the level of [[cocycle]]s. \hypertarget{connections_on_principal_bundles}{}\subsubsection*{{Connections on $G$-principal $\infty$-bundles}}\label{connections_on_principal_bundles} For some comments on the generalization of the notion of [[connection on a bundle]] to principal $\infty$-bundles see [[schreiber:differential cohomology in an (∞,1)-topos -- survey]]. \hypertarget{concrete_realizations}{}\subsection*{{Concrete realizations}}\label{concrete_realizations} We discuss realizations of the general definition in various [[(∞,1)-toposes]] $\mathbf{H}$. \hypertarget{in_topological_spaces}{}\subsubsection*{{In topological spaces}}\label{in_topological_spaces} The following general construction was originally due to Quillen and defines principal \emph{groupoid} $\infty$-bundles in the [[(∞,1)-topos]] [[Top]] in its [[presentable (infinity,1)-category|presentation]] by the [[model structure on simplicial sets]]. Let $C$ be a small [[category]] and let \begin{displaymath} \rho_P : C \to SSet \end{displaymath} be a functor with values in [[SSet]] such that it sends all morphisms in $C$ to weak equivalences in [[SSet]] ([[simplicial homotopy group|weak homotopy equivalences]] of simplicial sets). Consider first the case that $C$ has a single object, so that it is the [[delooping]] $\mathbf{B}G$ of a [[monoid]] or [[group]] $G$. Then Let \begin{displaymath} P := \rho_P(\bullet) \end{displaymath} be the simplicial set assigned to this single object and let \begin{displaymath} X := P//G := hocolim \rho_P \end{displaymath} be the corresponding [[action groupoid]] (see there for the description as a weak colimit). Notice that, as every [[action group]], this comes with a canonical map $P//G \to \mathbf{B}G$. \begin{utheorem} Given the above, the diagram \begin{displaymath} \itexarray{ P &\to& {*} \\ \downarrow && \downarrow \\ X &\stackrel{g}{\to}& \mathbf{B}G } \end{displaymath} is a homotopy pullback (i.e. defines a [[fibration sequence]]). \end{utheorem} \begin{proof} This is originally due to \begin{itemize}% \item D. Quillen, \emph{Higher algebraic K-theory I}, Springer Lecture notes in Math. 341 (1973) 85--147. \end{itemize} The statement is reproduced in section IV of \begin{itemize}% \item P. G. Goerss and J. F. Jardine, 1999, \emph{Simplicial Homotopy Theory}, number 174 in Progress in Mathematics, Birkhauser. (\href{http://www.maths.abdn.ac.uk/~bensondj/html/archive/goerss-jardine.html}{ps}) \end{itemize} \end{proof} \begin{uremark} For the simple case that $G$ is [[group]], in which case $\rho_C$ necessarily takes values not just in weak equivalences but is isomorphisms of simplicial sets, this says that $P \to X$ is a $G$-principal $\infty$-bundle. In particular the \emph{principality} of the action is manifestly exhibited by the fact that the base space $X$ is the (weak) quotient of $P$ by the action of $G$. The above reproduces manifest the description of ordinary $G$-principal topological bundles in the incarnation as groupoids as described in detail at [[generalized universal bundle]]. More generally, when $G$ is just a [[monoid]] the above descibes something a bit more general than an ordinary $G$-[[principal bundle]] (as then the action of $G$ on the total space may be by weak equivalences that are not isomorphisms). \end{uremark} Quillen's original construction is more general than this, concerning in fact 1-[[groupoid]]-principal $\infty$-bundles: \begin{utheorem} Let now $C$ be a [[category]] and for \begin{displaymath} \rho_P : C \to SSet \end{displaymath} a functor that sends all morphisms to weak equivalences of simplicial sets. Let now for each object $c \in C$ \begin{displaymath} P_c := \rho_C(c) \end{displaymath} be the ``bundle of $c$-fibers''. Then for each $c$ the diagram \begin{displaymath} \itexarray{ P_c &\to& {*} \\ \downarrow && \downarrow^{{*} \mapsto c} \\ X &\stackrel{g}{\to}& C } \end{displaymath} is a homotopy pullback (i.e. defines a [[fibration sequence]]). \end{utheorem} This classical construction is recalled in the introduction of \begin{itemize}% \item Jardine, \emph{Diagrams and torsors} (\href{http://www.math.uiuc.edu/K-theory/0723/diagrams3.pdf}{pdf}) \end{itemize} \hypertarget{in_simplicial_sets__kan_complexes}{}\subsubsection*{{In simplicial sets / Kan complexes}}\label{in_simplicial_sets__kan_complexes} See [[simplicial principal bundle]]. \hypertarget{in_a_petit_topos}{}\subsubsection*{{In a petit $(\infty,1)$-topos}}\label{in_a_petit_topos} For $X$ a [[topological space]] $C = Op(X)$ the [[category of open subsets]] of $X$, let $\mathbf{H} = Sh_{(\infty,1)}(X)$ be the [[(∞,1)-topos]] of [[∞-stacks]] on $C$. This is the [[petit topos]] incarnation of $X$. In its [[presentable (infinity,1)-category|presentation]] by the [[model structure on simplicial presheaves]] this is the context in which princpal $\infty$-bundles are discussed in \begin{itemize}% \item Jardine, \emph{Diagrams and torsors} (\href{http://www.math.uiuc.edu/K-theory/0723/diagrams3.pdf}{pdf}) \end{itemize} \hypertarget{in_a_gros_topos}{}\subsubsection*{{In a gros $(\infty,1)$-topos}}\label{in_a_gros_topos} For $C$ a [[site]] of test [[space]], -- for instance duals of [[algebras over a Lawvere theory]] as described at [[function algebras on infinity-stacks]] -- let $\mathbf{H} = Sh_{(\infty,1)}(C)$ be the [[(∞,1)-topos]] of [[∞-stacks]] on $C$. This is a [[gros topos]]. \hypertarget{smooth_principal_bundles}{}\paragraph*{{Smooth principal $\infty$-bundles}}\label{smooth_principal_bundles} Smooth principal $\infty$-bundles are realized in the $\infty$-[[Cahiers topos]] as described in some detail at [[∞-Lie groupoid]]. In this context there is a notion of [[connection on a principal ∞-bundle]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{ordinary_principal_bundles}{}\subsubsection*{{Ordinary principal bundles}}\label{ordinary_principal_bundles} For $G$ an ordinary [[Lie group]], a $G$-principal bundle in the $(\infty,1)$-topos $\mathbf{H} =$ [[?LieGrpd]] is an ordinary $G$-[[principal bundle]]. \hypertarget{circle_bundles}{}\subsubsection*{{Circle $n$-bundles}}\label{circle_bundles} For $G = \mathbf{B}^{n-1} U(1) \in$ [[?LieGrpd]], the , a $G$-principal $\infty$-bundle is a \textbf{circle $n$-bundle}. See [[circle n-bundle with connection]]. Classes of examples include \begin{itemize}% \item the [[Chern-Simons circle 3-bundle]]. \end{itemize} \hypertarget{bundle_gerbes}{}\subsubsection*{{Bundle gerbes}}\label{bundle_gerbes} \begin{itemize}% \item A [[bundle gerbe]] is a concrete model for the total space [[groupoid]] of the total space of a $\mathbf{B}U(1)$-[[principal 2-bundle]]. More generally, a [[nonabelian bundle gerbe]] is a concrete model for the [[groupoid]] of the total space of a general [[principal 2-bundle]]. \item A [[bundle 2-gerbe]] is a concrete model for the total space [[2-groupoid]] of the total space of a $\mathbf{B}^2 U(1)$-principal 3-bundle. More generally, a [[nonabelian bundle 2-gerbe]] is a concrete model for the [[2-groupoid]] of the total space of a general principal 3-bundle. Classes of examples include \begin{itemize}% \item the [[Chern-Simons bundle 2-gerbe]]. \end{itemize} \end{itemize} \hypertarget{normal_morphisms_of_groups}{}\subsubsection*{{Normal morphisms of $\infty$-groups}}\label{normal_morphisms_of_groups} A principal $\infty$-bundle over a [[0-connected]] object / [[delooping]] object $\mathf{B}K$ is a \emph{[[normal morphism of ∞-groups]]}. See there for more details. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[principal bundle]] / [[torsor]] / [[associated bundle]] / [[twisted bundle]] \item [[principal 2-bundle]] / [[gerbe]] / [[bundle gerbe]] \item [[principal 3-bundle]] / [[2-gerbe]] / [[bundle 2-gerbe]] \item \textbf{principal $\infty$-bundle} / [[associated ∞-bundle]] / [[∞-gerbe]], [[twisted ∞-bundle]], [[groupoid-principal ∞-bundle]] \item [[vector bundle]] \item [[(∞,1)-vector bundle]] / [[(∞,n)-vector bundle]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} The notion of principal $\infty$-bundle (often addressed in the relevant literature in the language of [[torsors]]) appears in the context of the [[simplicial presheaf]] [[model structure on simplicial presheaves|model]] for generalized spaces in \begin{itemize}% \item [[Rick Jardine]], Luo, \emph{Higher order principal bundles} (\href{http://www.math.uiuc.edu/K-theory/0681/cocycles6.pdf}{pdf}). \item [[Rick Jardine]], \emph{Cocycle categories} (\href{http://arxiv.org/abs/math.AT/0605198}{pdf}). \end{itemize} An earlier description in terms of simplicial objects is \begin{itemize}% \item P. Glenn, \emph{Realization of cohomology classes in arbitrary exact categories}, J. Pure Appl. Algebra 25, 1982, no. 1, 33--105. \end{itemize} In that article not the total space of the bundle $P \to X$ is axiomatized, but the $\infty$-[[action groupoid]] of the action of $G$ on it. See the remarks at [[principal 2-bundle]]. See also \begin{itemize}% \item [[Matthias Wendt]], \emph{Classifying spaces and fibrations of simplicial sheaves}, J. Homotopy Relat. Struct. 6 (2011), no. 1, 1-38 (\href{http://arxiv.org/abs/1009.2930}{arXiv:1009.2930}) \end{itemize} on [[associated ∞-bundle]]s. The fully general abstract formalization in [[(∞,1)-topos theory]] as discussed here was first indicated in \begin{itemize}% \item [[Hisham Sati]], [[Urs Schreiber]], [[Jim Stasheff]], \emph{[[schreiber:Twisted Differential String and Fivebrane Structures]]} \end{itemize} A more comprehensive conceptual account is in \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:differential cohomology in a cohesive topos]]} \item [[Thomas Nikolaus]], [[Urs Schreiber]], [[Danny Stevenson]], \emph{[[schreiber:Principal ∞-bundles -- models and general theory]]} \end{itemize} The [[classifying spaces]] for a large class of principal $\infty$-bundles are discussed in \begin{itemize}% \item [[David Roberts]], [[Danny Stevenson]], \emph{Simplicial principal bundle in parameterized spaces} (\href{http://arxiv.org/abs/1203.2460}{arXiv:1203.2460}) \end{itemize} \begin{itemize}% \item [[Danny Stevenson]], \emph{Classifying theory for simplicial parametrized groups} (\href{http://arxiv.org/abs/1203.2461}{arXiv:1203.2461}) \end{itemize} A fairly comprehensive account of the literature is also in the introduction of \hyperlink{NSS12}{NSS 12, ``Presentations''}. For $\mathbf{H}= \infty Grpd$ the statement that homotopy types over $B G$ are equivalently $G$-[[infinity-actions]] is maybe due to \begin{itemize}% \item E. Dror, [[William Dwyer]], and [[Daniel Kan]], \emph{Equivariant maps which are self homotopy equivalences}, Proc. Amer. Math. Soc. 80 (1980), no. 4, 670--672 (\href{http://www.jstor.org/stable/2043448}{JSTOR}) \end{itemize} This is mentioned for instance as exercise 4.2in \begin{itemize}% \item [[William Dwyer]], \emph{Homotopy theory of classifying spaces}, Lecture notes Copenhagen (June, 2008) \href{http://www.math.ku.dk/~jg/homotopical2008/Dwyer.CopenhagenNotes.pdf}{pdf} \end{itemize} Closely related discussion of homotopy fiber sequences and homotopy action but in terms of [[Segal spaces]] is in section 5 of \begin{itemize}% \item [[Matan Prezma]], \emph{Homotopy normal maps} (\href{http://arxiv.org/pdf/1011.4708v7.pdf}{arXiv}) \end{itemize} There, conditions are given for a morphism $A_\bullet \to B_\bullet$ to a [[reduced Segal space]] to have a fixed homotopy fiber, and hence encode an action of the loop group of $B$ on that fiber. [[!redirects principal infinity-bundles]] [[!redirects principal ∞-bundle]] [[!redirects principal ∞-bundles]] \end{document}