\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{pro-object} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{via_formal_cofiltered_limits}{Via formal co-filtered limits}\dotfill \pageref*{via_formal_cofiltered_limits} \linebreak \noindent\hyperlink{via_filtered_limits_of_presheaves}{Via filtered limits of presheaves}\dotfill \pageref*{via_filtered_limits_of_presheaves} \linebreak \noindent\hyperlink{as_formal_duals_of_indobjects}{As formal duals of ind-objects}\dotfill \pageref*{as_formal_duals_of_indobjects} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{tale_homotopy_theory}{\'E{}tale homotopy theory.}\dotfill \pageref*{tale_homotopy_theory} \linebreak \noindent\hyperlink{shape_theory}{Shape theory.}\dotfill \pageref*{shape_theory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{pro-object} of a [[category]] $C$ is a ``formal [[filtered category|cofiltered]] [[limit]]'' of [[objects]] of $C$. The category of pro-objects of $C$ is written $pro$-$C$. Such a category is sometimes called a \textbf{pro-category}, but notice that that is \emph{not} the same thing as a pro-object in [[Cat]]. ``Pro'' is short for ``projective''. ( \emph{[[projective limit|Projective limit]]} is an older term for \emph{[[limit]]}.) It is in contrast to ``ind'' in the dual notion of [[ind-object]], standing for ``inductive'', (and corresponding to \emph{[[inductive limit]]}, the old term for \emph{[[colimit]]}). In some (often older) sources, the term `projective system' is used more or less synonymously for pro-object. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{via_formal_cofiltered_limits}{}\subsubsection*{{Via formal co-filtered limits}}\label{via_formal_cofiltered_limits} The [[objects]] of the [[category]] $pro$-$C$ are [[diagrams]] $F:D\to C$ where $D$ is a [[small category|small]] [[filtered category|cofiltered]] category. The [[hom set]] of [[morphisms]] between $F:D\to C$ and $G:E\to C$ is \begin{displaymath} pro\text{-}C(F,G) = \underset{e\in E}{lim}\, \underset{d\in D}{colim} C(F d, G e) \end{displaymath} Notice that here the [[limit]] and [[colimit]] is taken in the category [[Set]] of sets. Cofiltered limits in [[Set]] are given by sets of [[thread]]s and filtered colimits by [[germs]] (classes of equivalences), thus a representative of $s\in\mathrm{pro}C(F,G)$ is a thread whose each component is a germ:\newline $s = (germ_e(s))_{e\in E}$ which can be more concretely written as $([s_{d_e,e}])_e$; thus $[s_{d_e,e}]\in colim_{d\in D} C(F d, G e)$ where $s_{d_e,e}\in C(F d_e, G e)$ is some representative of the class; there is at least one $d_e$ for each $e$; if the domain $E$ is infinite, we seem to need an axiom of choice in general to find a function $e\mapsto d_e$ which will choose one representative in each class $germ_e(s)$. Thus $s$ is given by the (equivalence class) of the following data \begin{itemize}% \item function $e\mapsto d_e$ \item correspondence $e\mapsto s_{d_e,e}\in C(F d_e, G e)$ \end{itemize} such that $([s_{d_e,e}])_e$ is a thread, i.e. for any $\gamma: e\to e'$ we have an equality of classes (germs) $[G(\gamma)\circ s_{d_e,e}] = [s_{d_{e'},e'}]$. This equality holds if there is a $d'$ and morphisms $\delta_e: d'\to d_e$, $\delta_{e'}: d'\to d_{e'}$ such that $G(\gamma)\circ s_{d_e,e}\circ F\delta_e = s_{d_{e'},e'}\circ F\delta_{e'}$. (Usually in fact people consider the dual of $D$ and the dual of $C$ as filtered domains). Now if we chose a different function $e\mapsto\tilde{d}_e$ instead then, $([s_{d_e,e}])_e = ([s_{\tilde{d}_e,e}])_e$, hence by the definition od classes, for every $e$ there is a $d''\in D$ and morphisms $\sigma_e : d''\to d_e$, $\tilde\sigma_e:d''\to \tilde{d}_e$ such that $s_{\tilde{d}_e,e}\circ F(\tilde\sigma_e) = s_{d_e,e}\circ F(\sigma_e)$. This definition is perhaps more intuitive in the dual case of [[ind-object|ind-objects]] (pro-objects in $C^{op}$), where it can be seen as stipulating that the objects of $C$ are [[finitely presentable object|finitely presentable]] in $ind$-$C$. \hypertarget{via_filtered_limits_of_presheaves}{}\subsubsection*{{Via filtered limits of presheaves}}\label{via_filtered_limits_of_presheaves} Another, equivalent, definition is to let $pro$-$C$ be the [[full subcategory]] of the [[opposite category|opposite]] [[functor category]]/[[category of presheaves|presheaf category]] $[C,Set]^{op}$ determined by those functors which are cofiltered limits of [[representable functor|representables]]. This is reasonable since the [[presheaf category|copresheaf category]] $[C,Set]^{op}$ is the [[free completion]] of $C$, so $pro$-$C$ is the ``free completion of $C$ under cofiltered limits.'' See also at [[pro-representable functor]]. The equivalence with the previous definition is seen as follows. To a functor $F: I \to C$, compose with the [[Yoneda lemma|co-Yoneda embedding]] $C \to [C,Set]^{op}$ to obtain a functor $\tilde F: I \to [C, Set]^{op}$, and then take $|F| = lim \tilde F \in [C,Set]^\mathrm{op}$. Explicitly, $|F|(c) = colim \tilde F^{op}$. This yields a functor $Pro(C) \to [C,Set]^{op}$, and its essential image manifestly consists of the functors which are cofiltered limits of the duals of representables. To see that this functor is fully faithful, we compute, for $F: I \to C$ and $G: J \to C$: $Hom(|F|,|G|) = Nat(colim \tilde G^\mathrm{op}, colim \tilde F^\mathrm{op})$ $= lim_{J^{op}} Nat(\tilde G^\mathrm{op}, colim \tilde F^\mathrm{op})$ $= lim_{J^{op}} colim_{I^\mathrm{op}} Nat(\tilde G^\mathrm{op}, \tilde F^\mathrm{op})$ $= lim_{J^{op}}colim_{I^\mathrm{op}} Hom_\mathcal{C}(F,G)$ as in $Pro(C)$. Here we have used the definition of a colimit, the fact that representables are [[compact objects]] (this follows from the fact that colimits are computed ``levelwise'' in a functor category), and the Yoneda lemma. \hypertarget{as_formal_duals_of_indobjects}{}\subsubsection*{{As formal duals of ind-objects}}\label{as_formal_duals_of_indobjects} \begin{remarl} \label{ProObjectAsFormalDualOfIndObject}\hypertarget{ProObjectAsFormalDualOfIndObject}{} The category of pro-objects in $\mathcal{C}$ is the [[opposite category]] of that of [[ind-objects]] in the opposite catgegory of $\mathcal{C}$: \begin{displaymath} Pro(\mathcal{C}) \simeq (Ind(\mathcal{C}^{op}))^{op} \,. \end{displaymath} \end{remarl} (e.g. \hyperlink{KashiwaraSchapira06}{Kashiwara-Schapira 06, p. 138}) \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item [[profinite set]], [[profinite space]] \item [[profinite group]], [[progroup]] \item [[pro-étale morphism of schemes]], [[pro-étale site]] \item Since every ([[dg-coalgebra|dg-]])[[coalgebra]] is the [[filtered colimit]] of its finite-dimensional subalgebras (see at \emph{\href{coalgebra#AsFilteredColimits}{coalgebra -- as filtered colimit}}), the [[linear dual]] of a (dg-)coalgebra is canonically a pro-object in finite dimensional ([[dg-algebra|dg-]])[[associative algebra|algebras]]. This plays a role for instance for constructing [[model structures for L-infinity algebras]], see \href{model+structure+for+L-infinity+algebras#OnProAlg}{there}. \item [[pro-category of towers]] \end{itemize} \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \hypertarget{tale_homotopy_theory}{}\subsubsection*{{\'E{}tale homotopy theory.}}\label{tale_homotopy_theory} Procategories were used by Artin and Mazur in their work on [[étale homotopy]] theory. They associated to a scheme a `pro-homotopy type'. (This is discussed briefly at [[étale homotopy]].) The important thing to note is that this was a pro-object in the \emph{homotopy category} of simplicial sets, i.e., in the pro-homotopy category. Friedlander rigidified their construction to get an object in the pro-category of simplicial sets, and this opened the door to use of `homotopy pro-categories'. \hypertarget{shape_theory}{}\subsubsection*{{Shape theory.}}\label{shape_theory} The form of [[shape theory]] developed by Marde\v{s}i and Segal, at about the same time as the work in algebraic geometry, again used the pro-homotopy category. Strong shape, developed by Edwards and Hastings, Porter and also in further work by Marde\v{s}i and Segal, used various forms of rigidification to get to the pro-category of spaces, or of simplicial sets. There methods of model category theory could be used. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[ind-object]] / [[ind-object in an (∞,1)-category]] \item \textbf{pro-object} / [[pro-object in an (∞,1)-category]] \item [[pro-representable functor]] \item [[ind-pro-object]] \item [[pro-left adjoint]] \item [[pro-homotopy theory]], [[profinite completion of a group]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Alexander Grothendieck]], \emph{Techniques de d\'e{}scente et th\'e{}or\`e{}mes d'existence en g\'e{}om\'e{}trie alg\'e{}brique, II: le th\'e{}or\`e{}me d'existence en th\'e{}orie formelle des modules}, Seminaire Bourbaki \textbf{195}, 1960, \href{http://archive.numdam.org/article/SB_1958-1960__5__369_0.pdf}{(pdf)}. \item (SGA4-1) [[Alexander Grothendieck]], [[Jean-Louis Verdier]], \emph{Pr\'e{}faisceaux}, Exp. 1 (\href{http://www.math.polytechnique.fr/~orgogozo/SGA4/01/01.pdf}{retyped pdf}) in \emph{Th\'e{}orie des topos et cohomologie \'e{}tale des sch\'e{}mas. Tome 1: Th\'e{}orie des topos}, S\'e{}minaire de G\'e{}om\'e{}trie Alg\'e{}brique du Bois-Marie 1963--1964 ([[SGA 4]]). Dirig\'e{} par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat. Lecture Notes in Mathematics \textbf{269}, Springer 1972. \href{http://www.iecn.u-nancy.fr/~gaillapy/SGA/grothendieck_sga_4.1.pdf}{pdf of SGA 4, Tome 1} \item [[Michael Artin]], [[Barry Mazur]], appendix of \emph{\'E{}tale homotopy theory}, Lecture Notes in Maths. 100, Springer-Verlag, Berlin 1969. \item [[Jean-Marc Cordier]], and [[Tim Porter]], \emph{Shape Theory}, categorical methods of approximation, Dover (2008) (This is a reprint of the 1989 edition without amendments.) \item [[Masaki Kashiwara]], and [[Pierre Schapira]], section 6 of \emph{[[Categories and Sheaves]]}, Grundlehren der mathematischen Wissenschaften 332 (2006) \item [[Peter Johnstone]], section VI.1 of \emph{[[Stone Spaces]]} \item [[Dan Isaksen]], \emph{Calculating limits and colimits in pro-categories}, Fund. Math. 175 (2002), \item [[Sibe Mardesic|S. Marde\v{s}i]], J. Segal, \emph{Shape theory}, North Holland 1982 \item [[Jean-Louis Verdier]], \emph{Equivalence essentielle des syst\`e{}mes projectifs}, C. R.A.S. Paris261 (1965), 4950 - 4953. \item [[John Duskin]], \emph{Pro-objects (after Verdier)}, S\'e{}m. Heidelberg- Strasbourg1966 -67, Expos\'e{} 6, I.R.M.A.Strasbourg. \item A. Deleanu, P. Hilton, Borsuk shape and Grothendieck categories of pro-objects, Math. Proc. Camb. Phil. Soc.79-3 (1976), 473-482 \href{http://www.ams.org/mathscinet-getitem?mr=400220}{MR400220} \end{itemize} no. 2, 175--194. \begin{itemize}% \item Tholen \end{itemize} [[!redirects pro-objects]] [[!redirects pro object]] [[!redirects pro-category]] \end{document}