\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{pro-set} \hypertarget{prosets}{}\section*{{Pro-sets}}\label{prosets} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{prosets_versus_locales}{Pro-sets versus locales}\dotfill \pageref*{prosets_versus_locales} \linebreak \noindent\hyperlink{the_classifying_locale_of_a_proset}{The classifying locale of a pro-set}\dotfill \pageref*{the_classifying_locale_of_a_proset} \linebreak \noindent\hyperlink{the_proset__of_a_locale}{The pro-set $\Pi_0$ of a locale}\dotfill \pageref*{the_proset__of_a_locale} \linebreak \noindent\hyperlink{the_classifying_locale_functor_is_not_an_embedding}{The classifying locale functor is not an embedding}\dotfill \pageref*{the_classifying_locale_functor_is_not_an_embedding} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{pro-set} is a [[pro-object]] in the [[category]] [[Set]]. This should not be confused with [[proset]], an abbreviation of ``preordered set.'' \hypertarget{prosets_versus_locales}{}\subsection*{{Pro-sets versus locales}}\label{prosets_versus_locales} \hypertarget{the_classifying_locale_of_a_proset}{}\subsubsection*{{The classifying locale of a pro-set}}\label{the_classifying_locale_of_a_proset} Since $Pro(Set)$ is the [[free completion]] of [[Set]] under [[cofiltered limits]], any functor out of $Set$ into a category with cofiltered limits extends uniquely to a cofiltered-limit-preserving functor from $Pro(Set)$. In particular, we can consider the functor $Set \to Loc$ from $Set$ to the category of [[locales]] which regards a set as a [[discrete space|discrete]] locale. If $(S_i)_i$ is a pro-set, which we may WLOG assume to be indexed on a [[directed poset]], then the corresponding locale $\lim S_i$ is presented by the following [[posite]]. Its underlying [[poset]] is the [[category of elements]] of the [[diagram]] $(S_i)_i$, i.e. its elements are pairs $(i,x)$ with $x\in S_i$, and we have $(i,x)\le (j,y)$ if $i\le j$ and $s_{i j}(x)=y$, where $s_{i j} \colon S_i \to S_j$ is the transition map. The covers in the posite are generated by $(i,x) \lhd s_{i j}^{-1}(x)$ for any $i,j,x$. Thus, the open sets in the locale $\lim S_i$ are the ``ideals'' for this coverage, i.e. sets $A$ of pairs $(i,x)$ which are down-closed and such that if $(j,y)\in A$ for some $j$ and all $y\in s_{i j}^{-1}(x)$, then $(i,x)\in A$. \hypertarget{the_proset__of_a_locale}{}\subsubsection*{{The pro-set $\Pi_0$ of a locale}}\label{the_proset__of_a_locale} On the other hand, there is a naturally defined functor $\Pi_0\colon Loc \to Pro(Set)$ which sends a locale to its pro-set of [[connected components]]. The vertices of the cofiltered diagram defining $\Pi_0(X)$ are decompositions $X = \coprod_{i\in I} U_i$ of $X$ as a [[coproduct]] of [[open subsets]], and the corresponding set is the index set $I$. A morphism $(U_i) \to (V_j)$, called a \emph{refinement}, consists of a function $f:I\to J$ such that $U_i$ is contained in $V_{f(i)}$; the corresponding function is of course $f$. This diagram is cofiltered: 1. It is nonempty, since $X$ is the 1-ary coproduct of itself. 1. Given decompositions $(U_i)$ and $(V_j)$, the decomposition $(U_i \cap V_j)_{i,j}$ refines both of them. 1. Given parallel refinements $f,g:(U_i)\to (V_j)$, for each $i$ we have $U_i \subseteq V_{f(i)} \cap V_{g(i)}$. If we define $K = \{ i | f(i) = g(i) \}$ and $W_i = U_i$ for $i\in K$, then we have an obvious refinement $h\colon (W_k) \to (U_i)$ and $f h = g h$. It remains to show that $(W_k)$ is actually a cover of $X$. Since $V_{j_1} \cap V_{j_2} = \bigcup \{ V_{j_1} | j_1 = j_2 \}$ (the latter being the [[join]] of a [[subsingleton]]), we have $U_i \subseteq \bigcup \{ U_i | f(i) = g(i) \}$ (another join of a subsingleton) and thus $U_i \subseteq \bigcup_{k\in K} W_k$. Thus, since the $U_i$ cover $X$, so do the $W_k$. The [[classical mathematics|classical mathematician]] may be forgiven for thinking this last argument to be more confusing than necessary, since classically, either $f(i)=g(i)$ (in which case $W_i = U_i$) or $f(i)\neq g(i)$ (in which case $U_i = \emptyset$). Constructively, however, the more involved argument is required. Note that if $X$ is [[locally connected space|locally connected]], then it has a ``minimal'' such decomposition, namely its decomposition into [[connected components]]. Thus, in this case $\Pi_0(X)$ is a mere set. This is the [[(0,1)-topos]] version of the [[fundamental group of a topos]] or the [[fundamental ∞-groupoid of an (∞,1)-topos]]. \begin{utheorem} The functor $\Pi_0\colon Loc \to Pro(Set)$ is left adjoint to $\lim\colon Pro(Set)\to Loc$. \end{utheorem} \begin{proof} Since $\lim$ is given by regarding a pro-set as a diagram of discrete locales and taking its limit, it suffices to show that morphisms of pro-sets $\Pi_0(X) \to S$, for a set $S$, are equivalent to morphisms of locales $X \to S_{disc}$. But a locale map $X \to S_{disc}$ is precisely a decomposition of $X$ into disjoint opens indexed by $S$, which exactly defines a map $\Pi_0(X) \to S$. \end{proof} If $X$ is an [[overt locale]], then every decomposition is refined by a decomposition into [[positive elements]], so we may as well consider only decompositions into positive opens. If we do this, the cofiltered category indexing $\Pi_0$ becomes a [[codirected poset]], since (in the argument above) each $(U_i)$ is covered by $\{ U_i | f(i) = g(i) \}$, which must therefore be an [[inhabited set]] for all $i$, so that $f=g$. Moreover, since in any refinement $f\colon (U_i) \to (V_j)$, each $V_j$ is covered by $\{ U_i | f(i)=j\}$, in this case the transition maps of the resulting pro-set are surjective. However, for a non-overt locale (which, recall, cannot exist [[classical mathematics|classically]]), it seems that the pro-set $\Pi_0(X)$ need not be surjective in this sense. \hypertarget{the_classifying_locale_functor_is_not_an_embedding}{}\subsubsection*{{The classifying locale functor is not an embedding}}\label{the_classifying_locale_functor_is_not_an_embedding} It is well-known that when restricted to the subcategory $Pro(FinSet)$ of [[profinite sets]], the functor $\lim$ is [[fully faithful]] and in fact lands inside the subcategory of [[topological locales]], its image being the category of [[Stone spaces]]. It is also true that when lifted to [[progroups]], the functor $\lim\colon Pro(Grp) \to Grp(Loc)$ into localic groups is fully faithful when restricted to \emph{strict} or \emph{surjective} progroups (those whose transition maps are surjective). However, in general the functor $\lim\colon Pro(Set) \to Loc$ is not an embedding. For a counterexample, consider morphisms $S\to 2$, where $S$ is a pro-set and $2=\{\bot,\top\}$, regarded as a pro-set in the trivial way (and thus giving rise to a discrete locale). A morphism of pro-sets $S\to 2$ is determined by a partition of some $S_i = S_i^\bot \sqcup S_i^\top$ (modulo a suitable equivalence relation as we change $i$). But a morphism of locales $\lim S_i \to 2$ consists of two ideals $A^\bot$ and $A^\top$ which are disjoint and whose union \emph{generates} the improper ideal (which consists of all pairs $(i,x)$). A pro-set morphism $S\to 2$ induces a locale map $\lim S_i \to 2$ where $A^\bot$ and $A^\top$ are the ideals generated by $S_i^\bot$ and $S_i^\top$, but in general not every morphism $\lim S_i \to 2$ is induced by one $S\to 2$. Specifically, consider the following pro-set, which is indexed on the natural numbers with the inverse ordering: \begin{displaymath} \cdots \to S_i \to \cdots \to S_2 \to S_1 \to S_0 \end{displaymath} We define $S_i = (\mathbb{N} \times \{a,b\}) / {\sim_i}$, where $\sim_i$ is the equivalence relation generated by $(k,a) \sim_i (k,b)$ for $k \ge i$. The transition maps are the obvious projections, which are surjective. Define \begin{displaymath} A^\bot = \{ (i,(k,a)) | k \lt i \} \quad\text{and}\quad A^\top = \{ (i,(k,b) | k \lt i \}. \end{displaymath} Then $A^\bot \cup A^\top$ generates the improper ideal, since for any $i$ we have $\{ (i+1, (i,a)), (i+1,(i,b)) \} \subset A^\bot \cup A^\top$, which covers $(i,(i,?))$, which covers $(i-1,(i,?))$, and so on down to $(0,(i,?))$. However, no $S_i$ can be partitioned as $S_i = S_i^\bot \sqcup S_i^\top$ in such a way that $S_i^\bot$ generates $A^\bot$ and $S_i^\top$ generates $A^\top$. Thus, this defines a locale map $\lim S_i \to 2$ which does not arise from a pro-set morphism $S\to 2$. [[!redirects pro-set]] [[!redirects pro-sets]] [[!redirects pro(Set)]] [[!redirects pro (Set)]] [[!redirects pro-Set]] [[!redirects pro Set]] [[!redirects Pro(Set)]] [[!redirects Pro (Set)]] [[!redirects Pro-Set]] [[!redirects Pro Set]] \end{document}