\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{progroup} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{surjective_progroups_versus_localic_groups}{Surjective progroups versus localic groups}\dotfill \pageref*{surjective_progroups_versus_localic_groups} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{progroup} is a [[pro-object]] in the [[category]] [[Grp]] of [[groups]]. In other words, it is a formal [[cofiltered limit]] of groups. \hypertarget{surjective_progroups_versus_localic_groups}{}\subsection*{{Surjective progroups versus localic groups}}\label{surjective_progroups_versus_localic_groups} Of course, the category [[Grp]] is [[complete category|complete]], but in general a progroup represented by some cofiltered diagram of groups is not equivalent to the actual limit of that diagram in $Grp$. However, [[profinite groups]] (i.e. cofiltered systems of \emph{finite} groups) can be identified with actual limits of finite groups if we take those limits, not in $Grp$, but in the larger category $TopGrp$ of [[topological groups]]. The resulting topological groups are precisely those with [[Stone space|Stone]] topologies. This is not true for pro-systems of non-finite groups, even if we restrict to those with surjective transition maps. The following counterexample is due to Higman and Stone, and is reproduced in (\hyperlink{Moerdijk}{Moerdijk}). Let $\omega_1$ be the set of countable ordinals, with the reverse of its usual ordering, and for $\alpha\in\omega_1$ let $S_\alpha$ be the set of strictly increasing functions $[0,\alpha]\to \mathbb{R}$. For $\alpha\lt \beta$, let $S_\beta \to S_\alpha$ be the restriction. Then each such transition map is surjective, but the inverse limit is empty. The sets $S_\alpha$ are not groups, but if we take the free [[vector space]] on each of them, we obtain a nontrivial pro-group with surjective transition maps whose limit in $Grp$, hence also in $TopGrp$, is trivial. However, we do get an embedding on pro-groups with surjective transition maps if instead of [[Top]] we take the limit in the category [[Loc]] of [[locales]]. \begin{uprop} The following are equivalent for a [[localic group]] $G$: 1. $G$ is a cofiltered limit of [[discrete group]]s (considered as discrete localic groups) 1. $G$ is a cofiltered limit of discrete groups with [[surjection|surjective]] transition maps. 1. The [[open subset|open]] [[normal subgroup]]s of $G$ form a [[neighborhood]] [[topological base|base]] at the identity $e\in G$. \end{uprop} \begin{proof} This can be found in (\hyperlink{Moerdijk}{Moerdijk}). \end{proof} \begin{udefn} A localic group with these properties is called \textbf{prodiscrete}. \end{udefn} We may as well assume that any surjective progroup is indexed on a directed [[poset]]. If $(G_i)_{i\in I}$ is such an inverse system, then the localic group $G=\lim_i G_i$ is presented by the following [[posite]]. The elements of the underlying poset are pairs $(x,i)$ where $x\in G_i$, with $(x,i)\le (y,j)$ when $i\le j$ and $f_{ij}(x)=y$. The coverings are given as follows: for any $j$, the element $(x,i)$ is covered by the family of all $(z,k)$ such that $k\le j$ and $(z,k)\le (x,i)$. \begin{udefn} A \textbf{surjective progroup}, also called a \textbf{strict progroup}, is a progroup whose cofiltered diagram consists of [[surjection]]s. \end{udefn} One can show that a progroup is isomorphic to a surjective one, in the category of pro-groups, if and only if it satisfies the \textbf{Mittag-Leffler condition}: for each $G_i$ the images of the functions $G_j\to G_i$ are eventually constant. By a fundamental fact about [[locales]], if $G$ is prodiscrete and represented as the limit of a system with surjective transition maps, then the legs $G\to G_i$ of the limiting cone are also surjective (i.e. they are represented by injective [[frame]] homomorphisms). This is false for limits of topological spaces. \begin{utheorem} The category of prodiscrete localic groups is equivalent to the category of surjective progroups. \end{utheorem} \begin{proof} In view of the \hyperlink{EquivalentCharacterizations}{above proposition} it suffices to show that for surjective progroups $(G_i)$ and $(H_j)$, with prodiscrete localic limits $G$ and $H$, we have \begin{displaymath} Hom_{LocGrp}(G,H) \cong \lim_j \colim_i Hom_{Grp}(G_i,H_j). \end{displaymath} But since $H = \lim_j H_j$, we have $Hom_{LocGrp}(G,H) \cong \lim_j Hom_{LocGrp}(G,H_j)$. Thus it suffices to show that any map from $G$ to a [[discrete group]] $K$ (such as $H_j$) factors through some essentially unique $G_i$. But if $f\colon G\to K$ is such a map, then $ker(f)$ is an open normal subgroup of $G$. And if $p_i\colon G\to G_i$ are the projections, then the [[kernel]]s $ker(p_i)$ are a neighborhood base at $e$, so we have $ker(p_i)\subseteq ker(f)$ for some $i$, hence $f$ factors through $G/ker(p_i)$. Finally, this last is isomorphic to $G_i$, since $p_i\colon G\to G_i$ is an open surjection of locales. \end{proof} Any [[localic group]] $G$ has a [[classifying topos]] consisting of continuous $G$-sets, i.e. discrete locales with a $G$-action. In general, the resulting [[functor]] \begin{displaymath} LocGrp \to Topos \end{displaymath} is not an [[embedding]] into [[Topos]], but it can be shown to be so when restricted to prodiscrete localic groups. One can also characterize the toposes that are sheaves on a prodiscrete localic group as the [[Galois topos|Galois toposes]]. Most of these results have corresponding facts for pro-[[groupoids]] and prodiscrete localic groupoids. However, in full generality, the category of (even surjective) pro-groupoids does not embed into localic groupoids, since the category of [[pro-sets]] (= categorically discrete pro-groupoids) does not embed into locales (= categorically discrete localic groupoids). \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Ieke Moerdijk]], \emph{Prodiscrete groups and Galois toposes} \end{itemize} [[!redirects progroups]] [[!redirects pro-group]] [[!redirects pro-groups]] [[!redirects prodiscrete localic group]] [[!redirects prodiscrete localic groups]] \end{document}