\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{projective line} \hypertarget{projective_lines}{}\section*{{Projective lines}}\label{projective_lines} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{analytic_projective_lines}{Analytic projective lines}\dotfill \pageref*{analytic_projective_lines} \linebreak \noindent\hyperlink{synthetic_projective_lines}{Synthetic projective lines}\dotfill \pageref*{synthetic_projective_lines} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{lines_in_projective_planes}{Lines in projective planes}\dotfill \pageref*{lines_in_projective_planes} \linebreak \noindent\hyperlink{trivial_examples}{Trivial examples}\dotfill \pageref*{trivial_examples} \linebreak \noindent\hyperlink{analytic_examples}{Analytic examples}\dotfill \pageref*{analytic_examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A projective line is a [[projective space]] of [[dimension]] 1. \hypertarget{analytic_projective_lines}{}\subsection*{{Analytic projective lines}}\label{analytic_projective_lines} If $k$ is a field, the projective line over $k$ is typically denoted $\mathbb{P}^1(k)$. Set-theoretically it is a disjoint union $k \sqcup \{\infty\}$ where each $a \in k$ has homogeneous coordinates $[a, 1]$ and $\infty$ has homogeneous coordinates $[1, 0]$. The classical case of a projective line is over the complex numbers $\mathbb{C}$, where $\mathbb{P}^1(\mathbb{C})$ is also known as the [[Riemann sphere]]. A [[meromorphic function]] on $\mathbb{C}$ may be naturally interpreted as a [[holomorphic function]] $\mathbb{C} \to \mathbb{P}^1(\mathbb{C})$. In particular, a [[rational function]] $p/q \in \mathbb{C}(z)$ may be interpreted as a holomorphic function $[p/q]: \mathbb{P}^1(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$; concretely, if $p(z), q(z)$ are relatively prime and of degrees $m, n$ respectively, then we may homogenize by setting $p(x, y) \coloneqq y^m p(x/y)$ and $q(x, y) \coloneqq y^n q(x/y)$, and define $[p/q]$ by the mapping on homogeneous coordinates $[x, y] \mapsto [p(x, y), q(x, y)]$. In fact, there is a bijective correspondence between such holomorphic endomaps on $\mathbb{P}^1(\mathbb{C})$ and rational functions on $\mathbb{C}$ (well, almost: the constant holomorphic map valued at $\infty$ corresponds to the illegitimate ``rational function'' $1/0$). \hypertarget{synthetic_projective_lines}{}\subsection*{{Synthetic projective lines}}\label{synthetic_projective_lines} It is possible to define a [[synthetic mathematics|synthetic]]/[[axiom|axiomatic]] notion of ``projective line'', somewhat analogously to the synthetic definition of [[projective plane]]. It is less obvious how to do this, since there is no relation of ``incidence'' inside a projective line. One approach, due to \hyperlink{Buekenhout74}{(Buekenhout)}, is to axiomatize the collection of ``central collineations'' of a projective line. In general, a \emph{central collineation} of an $n$-dimensional [[projective space]] $\pi$ (with $n\ge 2$) is an automorphism $\sigma$ of $\pi$ such that \begin{enumerate}% \item there exists a point $O$, called the \emph{center}, such that $\sigma$ fixes every line through $O$ (setwise, i.e.$\backslash$ it sends every point on that line to a point on the same line), and \item there exists a hyperplane $H$ (an $(n-1)$-dimensional subspace), called the \emph{axis}, which $\sigma$ fixes pointwise (i.e.$\backslash$ it sends every point on $H$ to itself). \end{enumerate} If $\pi$ has dimension $\ge 3$, so that it has nontrivial sub-projective-spaces of dimension $\ge 2$, then the restriction of a central collineation of $\pi$ to any such sub-projective-space containing the center $O$ and not contained in the axis $H$ is again a central collineation. Conversely, every central collineation of any subspace of such a $\pi$ is induced from a central collineation of $\pi$ itself (see for instance \hyperlink{BeutelspacherRosenbaum}{Beutelspacher-Rosenbaum, Theorem 3.1.10}). The latter fact uses Desargues' theorem, but this is true since $\pi$ must be of dimension $\ge 3$ to have any nontrivial sub-projective-spaces. Indeed, by a theorem of Baer (\hyperlink{BeutelspacherRosenbaum}{Beutelspacher-Rosenbaum, Theorem 3.1.8}), whenever $\pi$ (of dimension $\ge 2$) is Desarguesian, a central collineation is uniquely determined by its axis, its center, and one more pair of corresponding points. Thus, given $O$ and $H$, the central collineations with center $O$ and axis $H$ act freely and transitively on $\pi \setminus (H\cup \{O\})$. Of course, when $\pi$ is of dimension $\ge 2$, before we can talk about central collineations, we need to already know what the ``hyperplanes'' are. However, in the hypothetical 1-dimensional case, hyperplanes are just points, so that the center and axis are both points, and we can imagine giving structure to $\pi$ by \emph{axiomatizing} its central collineations instead of \emph{defining} them. This is done by the following definition, due to Buekenhout (\hyperlink{Buekenhout74}{paper}, \hyperlink{BuekenhoutCohen}{book (chapter 6)}). \begin{defn} \label{}\hypertarget{}{} \textbf{(Buekenhout)} A \textbf{projective line} is a set $\ell$ of cardinality $\ge 3$ together with the following. \begin{enumerate}% \item For each $p,q\in \ell$, a group $\Lambda(p,q)$ whose elements are called \emph{central collineations with center $p$ and axis $q$}. Note that $q$ need not be distinct from $p$. \item $\Lambda(p,q)$ acts on $\ell$ fixing $p$ and $q$, and if an element of it fixes a point $r \notin \{p,q\}$, then it is the identity. In particular, the action is [[faithful action|faithful]], and therefore embeds each $\Lambda(p,q)$ in the [[permutation group]] $Aut(\ell)$. \item If $p\neq q$, then $\Lambda(p,q)$ and $\Lambda(q,p)$ commute with each other. \item For any $\sigma\in\Lambda(r,s)$ and any $p,q$, we have $\sigma \Lambda(p,q) \sigma^{-1} = \Lambda(\sigma(p),\sigma(q))$. \item The composite of two collineations with center $p$ (possibly with different axes) is again a collineation with center $p$, and dually the composite of two collineations with axis $q$ (possibly with different centers) is again a collineation with axis $q$. Thus we have two groups $\Lambda(p) = \bigcup_q \Lambda(p,q)$ and $\Lambda^\vee(q) = \bigcup_p\Lambda(p,q)$. \end{enumerate} A projective line is \textbf{Desarguesian} if in addition $\Lambda(p,q)$ acts [[transitive action|transitively]] on $\ell \setminus \{p,q\}$. In other words, if $r,s\in \ell\setminus \{p,q\}$, there is a (necessarily unique) $\sigma\in\Lambda(p,q)$ with $\sigma(r)=s$. \end{defn} \hypertarget{examples}{}\subsubsection*{{Examples}}\label{examples} \hypertarget{lines_in_projective_planes}{}\paragraph*{{Lines in projective planes}}\label{lines_in_projective_planes} We saw above that when $\pi$ is of dimension $\ge 3$, then every central collineation of a subspace (of dimension $\ge 2$) is induced by some central collineation of $\pi$. Even though this required Desargues' theorem to prove, which might not be true in a projective plane (dimension $2$), we can still take the point of view that every ``central collineation'' of a line in a projective plane ought to be induced by a central collineation of the plane itself. This yields the following construction: Given a projective plane $\pi$ (not necessarily Desarguesian), and a line $\ell$ in $\pi$, for any $p,q\in \ell$ define $\Lambda(p,q)$ to be the set of permutations of $\ell$ that are the restriction to $\ell$ of some central collineation of $\pi$ with center $p$ and axis containing $q$. It is straightforward to verify that this makes $\ell$ into a ``projective line'' in the above sense. \hypertarget{trivial_examples}{}\paragraph*{{Trivial examples}}\label{trivial_examples} There are, however, plenty of projective lines not arising from projective planes. For instance, we might set $\Lambda(p,q) = 1$ for all $p,q$. \hypertarget{analytic_examples}{}\paragraph*{{Analytic examples}}\label{analytic_examples} Let $k$ be a [[division ring]] and $V$ a 2-dimensional right [[vector space]] over $k$. Then $\mathbb{P}(V)$ has the structure of a Desarguesian projective line, where \begin{itemize}% \item if $p\neq q$, then $\Lambda(p,q)$ is the image in $PGL(V)$ of those automorphisms in $GL(V)$ fixing $q$ pointwise and $p$ setwise. \item if $p= q$, then $\Lambda(p,q)$ is the image in $PGL(V)$ of those automorphisms $\alpha\in GL(V)$ such that $\alpha(p)=p$ and $\alpha(x)-x\in p$ for all $x\in V$. \end{itemize} Conversely, every Desarguesian projective line arises from a division ring in this way. Fix three points $0,1,\infty \in \ell$ and define \begin{itemize}% \item $k=\ell\setminus\{\infty\}$. \item $a+b = t_b(a)$, where $t_b$ is the unique element of $\Lambda(\infty,\infty)$ with $t_b(0)=b$. \item $a b = \lambda_a(b)$, where $\lambda_b$ is the unique element of $\Lambda(0,\infty)$ with $t_a(1)=a$. \end{itemize} It follows that every Desarguesian projective line can be embedded into a Desarguesian projective plane, and indeed a projective space of any dimension. See \hyperlink{BuekenhoutCohen}{Buekenhout-Cohen, Chapter 6} for details. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Albrecht Beutelspacher and Ute Rosenbaum, \emph{Projective Geometry: from foundations to applications}. Cambridge University Press, 1998. (\href{https://www.maths.ed.ac.uk/~v1ranick/papers/beutel.pdf}{pdf}) \item Francis Buekenhout, \emph{Foundations of one Dimensional Projective Geometry based on Perspectivities}. Abhandlungen aus dem Mathematischen Seminar der Universit\"a{}t Hamburg, 43 (1975) 21-29. doi:\href{https://doi.org/10.1007/BF02995931}{10.1007/BF02995931} \item Francis Buekenhout and Arjeh M. Cohen, \emph{Diagram Geometry: Related to Classical Groups and Buildings}. Springer, 2013, doi:\href{https://doi.org/10.1007/978-3-642-34453-4}{10.1007/978-3-642-34453-4} (\href{http://www.win.tue.nl/~amc/buek/}{author pdf}) \end{itemize} [[!redirects projective lines]] \end{document}