\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{projective object} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{InAbelianCats}{In abelian categories}\dotfill \pageref*{InAbelianCats} \linebreak \noindent\hyperlink{EquivalentCharacterizationInAbelianCats}{Equivalent characterizations}\dotfill \pageref*{EquivalentCharacterizationInAbelianCats} \linebreak \noindent\hyperlink{projective_resolutions}{Projective resolutions}\dotfill \pageref*{projective_resolutions} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{ExistenceOfEnoughProjectives}{Existence of enough projectives}\dotfill \pageref*{ExistenceOfEnoughProjectives} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{defn} \label{}\hypertarget{}{} An [[object]] $P$ of a [[category]] $C$ is \textbf{projective} (with respect to [[epimorphisms]]) if it has the [[left lifting property]] against [[epimorphisms]]. \end{defn} This means that $P$ is projective if for any [[morphism]] $f:P \to B$ and any [[epimorphism]] $q:A \to B$, $f$ factors through $q$ by some morphism $P\to A$. \begin{displaymath} \itexarray{ && A \\ &{}^{\mathllap{\exists}}\nearrow& \downarrow^{\mathrlap{q}} \\ P &\stackrel{f}{\to}& B } \,. \end{displaymath} Yet another way to say this is that \begin{defn} \label{ByCovHomPreservingEpis}\hypertarget{ByCovHomPreservingEpis}{} An object $P$ is projective precisely if the [[hom-functor]] $Hom(P,-)$ preserves [[epimorphisms]]. \end{defn} \begin{remark} \label{}\hypertarget{}{} This generalizes the notion of \emph{[[projective modules]]} over a [[ring]]. \end{remark} \begin{remark} \label{}\hypertarget{}{} There are variations of the definition where ``epimorphism'' is replaced by some other type of morphism, such as a [[regular epimorphism]] or [[strong epimorphism]] or the left class in some [[orthogonal factorization system]]. In this case one may speak of \textbf{regular projectives} and so on. In a [[regular category]] ``projective'' almost always means ``regular projective.'' If the ambient category has an [[initial object]] $\emptyset$, then the injective objects $P$ are those for which $\emptyset \stackrel{\exists!}{\to} P$ is called an [[projective morphism]]. \end{remark} \begin{remark} \label{}\hypertarget{}{} The [[duality|dual]] notion is that of \emph{[[injective objects]]}. \end{remark} \begin{remark} \label{}\hypertarget{}{} There is also a stronger notion of projective object, where $\hom(C, -)$ preserves coequalizers. See more at [[tiny object]], which can be defined as projective [[connected objects]] with ``projective'' used in this stronger sense. \end{remark} \begin{defn} \label{EnoughProjectives}\hypertarget{EnoughProjectives}{} A category $C$ has \textbf{enough projectives} if for every object $X$ there is an [[epimorphism]] $P\to X$ where $P$ is projective. Equivalently: if every object admits a \emph{[[projective presentation]]}. \end{defn} This terminology refers to the existence of [[projective resolutions]], prop. \ref{EnoughIsEnough} below. \hypertarget{InAbelianCats}{}\subsubsection*{{In abelian categories}}\label{InAbelianCats} Projective objects and [[injective objects]] in [[abelian categories]] $\mathcal{A}$ are of central interest in [[homological algebra]]. Here they appear as parts of [[cofibrant resolutions]] and [[fibrant resolutions]], respectively, in the [[category of chain complexes]] $Ch_\bullet(\mathcal{A})$, with respect to one of the two standard [[model structures on chain complexes]]. \hypertarget{EquivalentCharacterizationInAbelianCats}{}\paragraph*{{Equivalent characterizations}}\label{EquivalentCharacterizationInAbelianCats} \begin{prop} \label{EquivalenceOfDefinitionsInAbelian}\hypertarget{EquivalenceOfDefinitionsInAbelian}{} The following are equivalent \begin{enumerate}% \item $X \in \mathcal{A}$ is a projective object (in that it has the [[left lifting property]] against [[epimorphisms]], def. \ref{ByCovHomPreservingEpis}); \item The [[hom-functor]] $Hom(X,-) : \mathcal{A} \to$ [[Ab]] is an [[exact functor]]. \end{enumerate} \end{prop} \begin{remark} \label{}\hypertarget{}{} For every object $X$, the hom-functor $Hom(X,-)$ is a [[left exact functor]]. So the second statement is equivalently that it is also right exact precisely if $X$ is projective. \end{remark} \begin{proof} \textbf{of prop. \ref{EquivalenceOfDefinitionsInAbelian}} Let \begin{displaymath} 0 \to A \stackrel{i}{\hookrightarrow} B \stackrel{p}{\to} C \to 0 \end{displaymath} be a [[short exact sequence]]. The exactness at $A$ and $B$ together is equivalent to the statement that $i = \ker(p)$. Since as remarked above $Hom(X, -)$ is left exact, it preserves [[kernels]] and so $Hom(X, i) = \ker(Hom(X, p))$, giving exactness of the sequence \begin{displaymath} 0 \to Hom(X,A) \stackrel{Hom(X,i)}{\to} Hom(X,B) \stackrel{Hom(X,p)}{\to} Hom(X,C) \,. \end{displaymath} Therefore we are reduced to showing that $Hom(X,p)$ is an [[epimorphism]] precisely if $X$ is projective. But this is def. \ref{ByCovHomPreservingEpis}. \end{proof} \hypertarget{projective_resolutions}{}\paragraph*{{Projective resolutions}}\label{projective_resolutions} Let $\mathcal{A}$ be an [[abelian category]]. \begin{defn} \label{}\hypertarget{}{} For $N \in \mathcal{A}$ an object, a \textbf{[[projective resolution]]} of $N$ is a [[chain complex]] $(Q N)_\bullet \in Ch_\bullet(\mathcal{A})$ equipped with a [[chain map]] \begin{displaymath} Q N \to N \end{displaymath} (with $N$ regarded as a complex concentrated in degree 0) such that \begin{enumerate}% \item this morphism is a [[quasi-isomorphism]] (this is what makes it a [[resolution]]), which is equivalent to \begin{displaymath} \cdots \to (Q N)_1 \to (Q N)_0 \to N \end{displaymath} being an [[exact sequence]]; \item all whose entries $(Q N)_n$ are projective objects. \end{enumerate} \end{defn} \begin{remark} \label{}\hypertarget{}{} This means precisely that $Q N \to N$ is an [[cofibrant resolution]] with respect to the standard [[model structure on chain complexes]] (see \href{model%20structure%20on%20chain%20complexes#StandardQuillenOnBounded}{here}) for which the fibrations are the positive-degreewise epimorphisms. Notice that in this model structure every object is fibrant, so that cofibrant resolutions are the only resolutions that need to be considered. \end{remark} \begin{prop} \label{EnoughIsEnough}\hypertarget{EnoughIsEnough}{} If $\mathcal{A}$ has \emph{enough projectives} in the sense of def. \ref{EnoughProjectives}, then every object has a projective resolution. \end{prop} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{remark} \label{ProjectiveInSetsIsAxiomOfChoice}\hypertarget{ProjectiveInSetsIsAxiomOfChoice}{} The [[axiom of choice]] can be phrased as ``all objects of [[Set]] are projective.'' See also \emph{[[internally projective object]]} and \emph{[[COSHEP]]}. \end{remark} \begin{example} \label{}\hypertarget{}{} If $C$ has [[pullback|pullbacks]] and epimorphisms are preserved by pullback, as is the case in a [[pretopos]], then $P$ is projective iff any epimorphism $Q\to P$ is [[split epimorphism|split]]. \end{example} \begin{example} \label{ProjectiveObjectsInAbAreFreeGroups}\hypertarget{ProjectiveObjectsInAbAreFreeGroups}{} An object in [[Ab]], an [[abelian group]], is projective precisely if it is a [[free group]]. \end{example} \begin{example} \label{}\hypertarget{}{} For $R$ a [[commutative ring]], an object in $R$[[Mod]], an $R$-[[module]], is projective (a [[projective module]], see there for more details) precisely if it is a [[direct sum|direct summand]] of a [[free module]]. See at \emph{[[projective module]]} for more on this. \end{example} \begin{example} \label{}\hypertarget{}{} The projective objects in [[compact topological space|compact]] [[Hausdorff topological spaces]] are precisely the [[extremally disconnected profinite sets]]. \end{example} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{ExistenceOfEnoughProjectives}{}\subsubsection*{{Existence of enough projectives}}\label{ExistenceOfEnoughProjectives} We list examples of classes of categories that have enough projective, according to def. \ref{EnoughProjectives}. \begin{prop} \label{ModHasEnoughProjectives}\hypertarget{ModHasEnoughProjectives}{} Assuming the [[axiom of choice]], for $R$ a [[ring]] the category $R$[[Mod]] of [[modules]] over $R$ is has enough projectives. \end{prop} See at \emph{[[projective module]]} for more. \begin{lemma} \label{FreeModulesAreProjective}\hypertarget{FreeModulesAreProjective}{} Assuming the [[axiom of choice]], a [[free module]] $N \simeq R^{(S)}$ is projective. \end{lemma} \begin{proof} By remark \ref{ProjectiveInSetsIsAxiomOfChoice} and the [[free-forgetful adjunction]]. More explicitly: if $S \in Set$ and $F(S) = R^{(S)}$ is the [[free module]] on $S$, then a module homomorphism $F(S) \to N$ is specified equivalently by a [[function]] $f : S \to U(N)$ from $S$ to the underlying set of $N$, which can be thought of as specifying the images of the unit elements in $R^{(S)} \simeq \oplus_{s \in S} R$ of the ${\vert S\vert}$ copies of $R$. Accordingly then for $\tilde N \to N$ an epimorphism, the underlying function $U(\tilde N) \to U(N)$ is an epimorphism, and by remark \ref{ProjectiveInSetsIsAxiomOfChoice} the [[axiom of choice]] in [[Set]] says that we have all lifts $\tilde f$ in \begin{displaymath} \itexarray{ && U(\tilde N) \\ & {}^{\tilde f} \nearrow & \downarrow \\ S &\stackrel{f}{\to}& U(N) } \,. \end{displaymath} By [[adjunction]] these are equivalently lifts of module homomorphisms \begin{displaymath} \itexarray{ && \tilde N \\ & \nearrow & \downarrow \\ R^{(S)} &\stackrel{}{\to}& N } \,. \end{displaymath} \end{proof} \begin{proof} \textbf{of prop. \ref{ModHasEnoughProjectives}} For $N \in R Mod$ and $U(N) \in Set$ its underlying set, consider the $R$-linear map \begin{displaymath} \left( \oplus_{n \in U(n)} R \right) \to N \end{displaymath} out of the [[direct sum]] of ${\vert U(N)\vert}$ copies of $N$, which sends the unit element $1 \in R_{n}$ of the $n$-labeled copy of $R$ to the corresponding element of $n$ (and is thus fixed on all other elements by $R$-linearity). This is clearly a [[surjection]] and by lemma \ref{FreeModulesAreProjective} it is a surjection out of a projective object. \end{proof} A slightly subtle point is that there is no guarantee that the free module $F U(M)$ is actually projective, unless one assumes some form of the [[axiom of choice]]. Since the axiom of choice is not available in all [[toposes]], one cannot use this procedure in general to construct, say, projective resolutions of [[abelian sheaves]], hence in the abelian category $Ab(E)$ of abelian [[group objects]] in a general [[Grothendieck topos]] $E$ (even though one can construct [[free resolutions]]), such as needed in general in [[abelian sheaf cohomology]]. There are however weak forms of the axiom of choice that hold in many toposes, such as the [[presentation axiom]], aka \emph{[[COSHEP]]}. We have the following result: \begin{prop} \label{EnoughWithCOSHEP}\hypertarget{EnoughWithCOSHEP}{} Let $E$ be a [[W-pretopos]] that satisfies [[COSHEP]]. Then $Ab(E)$ has enough projectives. \end{prop} The idea of the proof is that under COSHEP, the underlying object of an abelian group $A$ in $E$ admits an [[epimorphism]] from a projective object $p \colon X \to U(A)$ in $E$. Then the corresponding $F(X) \to A$ is an epimorphism out of a projective in $Ab(E)$, for this map is a composite of epimorphisms \begin{displaymath} F(X) \stackrel{F(p)}{\to} F U(A) \stackrel{\varepsilon_A}{\to} A \end{displaymath} (the first is epic because left adjoints preserve epis, whereas the second map, the component of the counit $\varepsilon \colon F U \to id$ at $A$, is epic because $U$ is faithful). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[COSHEP]] \item \textbf{projective object}, [[projective presentation]], [[projective cover]], [[projective resolution]] \begin{itemize}% \item [[projective module]] \item [[internally projective object]] \end{itemize} \item [[injective object]], [[injective presentation]], [[injective envelope]], [[injective resolution]] \begin{itemize}% \item [[injective module]] \end{itemize} \item [[free object]], [[free resolution]] \begin{itemize}% \item [[free module]] \end{itemize} \item flat object, [[flat resolution]] \begin{itemize}% \item [[flat module]] \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} For instance section 4.3 of \begin{itemize}% \item [[Pierre Schapira]], \emph{Categories and homological algebra} (2011) (\href{http://people.math.jussieu.fr/~schapira/lectnotes/HomAl.pdf}{pdf}) \end{itemize} [[!redirects enough projectives]] [[!redirects projective objects]] \end{document}