\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{projective representation} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{representation_theory}{}\paragraph*{{Representation theory}}\label{representation_theory} [[!include representation theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{GroupExtensionAndCocycle}{The group extension and its cocycle}\dotfill \pageref*{GroupExtensionAndCocycle} \linebreak \noindent\hyperlink{RelationToGenuineRepresentations}{Relation to genuine representations}\dotfill \pageref*{RelationToGenuineRepresentations} \linebreak \noindent\hyperlink{as_twisted_linear_representations}{As twisted linear representations}\dotfill \pageref*{as_twisted_linear_representations} \linebreak \noindent\hyperlink{as_genuine_representations_after_extensions}{As genuine representations after extensions}\dotfill \pageref*{as_genuine_representations_after_extensions} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \emph{projective representation} of a [[group]] $G$ is a [[representation]] up to a central term: a [[group]] [[homomorphism]] $G\longrightarrow PGL(V)$, to the [[projective general linear group]] of some $\mathbb{K}$-[[vector space]] $V$. \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{GroupExtensionAndCocycle}{}\subsubsection*{{The group extension and its cocycle}}\label{GroupExtensionAndCocycle} By construction, there is a [[short exact sequence]] \begin{displaymath} 1 \to \mathbb{K}^\times \longrightarrow GL(V) \longrightarrow PGL(V)\to 1 \end{displaymath} which exhibits $GL(V)$ as a [[group extension]] of $PGl(V)$ by the [[group of units]] $\mathbb{K}^\times$ of the [[ground field]]. This is classified by a 2-[[cocycle]] $c$ in [[group cohomology]] $H^2_{Grp}(PGL(V),\mathbb{K}^\times)$. It is useful to re-express this equivalently in terms of [[homotopy theory]] via the discussion at [[looping and delooping]], by which [[group]] [[homomorphisms]] $\phi \colon G\longrightarrow H$ are equivalently maps $\mathbf{B}\phi \colon \mathbf{B}G\longrightarrow \mathbf{B}H$ between their [[delooping]] [[groupoids]]. In terms of this the above [[group extension]] and its classifying cocycle is exhibited by a [[homotopy fiber sequence]] of [[deloopings]] of the form \begin{displaymath} \itexarray{ \mathbf{B}\mathbb{K}^*& \longrightarrow & \mathbf{B}GL(V) &\longrightarrow& \ast \\ \downarrow && \downarrow && \downarrow \\ \ast &\longrightarrow&\mathbf{B}PGL(V) &\stackrel{c}{\longrightarrow}& \mathbf{B}^2 \mathbb{K}^\times } \,. \end{displaymath} \hypertarget{RelationToGenuineRepresentations}{}\subsubsection*{{Relation to genuine representations}}\label{RelationToGenuineRepresentations} Via the projection $GL(V)\to PGL(V)=GL(V)/\mathbb{K}^\times$, every linear representation of $G$ induces a projective representation. By the [[universal property]] of the [[homotopy pullback]], the discussion \hyperlink{GroupExtensionAndCocycle}{above} means that the [[obstruction]] to lift a given projective representation $\mathbf{B}\rho \colon \mathbf{B}G\longrightarrow \mathbf{B} PGL(V)$ to a linear representation $\hat \rho$ \begin{displaymath} \itexarray{ & & \mathbf{B}GL(V) &\longrightarrow& \ast \\ & {}^{\mathllap{\mathbf{B}\hat \rho}}\nearrow & \downarrow && \downarrow \\ \mathbf{B}G &\stackrel{\mathbf{B}\rho}{\longrightarrow}&\mathbf{B}PGL(V) &\stackrel{c}{\longrightarrow}& \mathbf{B}^2 \mathbb{K}^\times } \end{displaymath} is the class of the 2-[[cocycle]] $c(\rho)\coloneqq c \circ \mathbf{B}\rho$ in the [[group cohomology]] class $H^2_{Grp}(G,\mathbb{K}^\times)$. \hypertarget{as_twisted_linear_representations}{}\subsubsection*{{As twisted linear representations}}\label{as_twisted_linear_representations} By the \hyperlink{GroupExtensionAndCocycle}{above} and the discussion at \emph{\href{group+extension#FormulationInHomotopyTheory}{group extension -- Central group extensions -- Formulation in homotopy theory}} the cocycle map $\mathbf{B}c \colon \mathbf{B}PGL(V)\to \mathbf{B}^2 \mathbb{K}^\times$ of [[homotopy types]] may be represented by a [[zigzag]] (``[[infinity-anafunctor|2-anafunctor]]'') of [[crossed complexes]] as \begin{displaymath} \itexarray{ \mathbf{B}(\mathbb{K}^\times \to GL(V)) &\longrightarrow& \mathbf{B}(\mathbb{K}^\times \to 1) \\ \downarrow^{\mathrlap{\simeq}} \\ \mathbf{B}PGL(V) } \,. \end{displaymath} Here the [[2-groupoid]] $\mathbf{B}(\mathbb{K}^\times \to GL(V))$ looks schematically like \begin{displaymath} \left\{ \itexarray{ && \ast \\ & {}^{\mathllap{p_1}}\nearrow &\Downarrow^{\mathrlap{k}}& \searrow^{\mathrlap{p_2}} \\ \ast && \underset{k p_1 p_2}{\longrightarrow}&& \ast } \right\} \end{displaymath} This shows that a map $\mathbf{B}G\to \mathbf{B}PGL(V)$ may equivalently be represented by two [[functions]] (not group homomorphisms in general!) \begin{enumerate}% \item $\rho \colon G\to GL(V)$ \item $\lambda \colon G\times G\to \mathbb{K}^\times$ \end{enumerate} such that for all $g,h \in G$ \begin{enumerate}% \item $\rho(g)\rho(h)=\lambda(g,h)\rho(g h)$ \item $\lambda$ is a [[group cohomology|group 2-cocycle]] on $G$ with values in $\mathbb{K}^*$ representing the above cohomology class of $c_\rho$. \end{enumerate} This is the form in which projective representations are often discussed in the literature. \hypertarget{as_genuine_representations_after_extensions}{}\subsubsection*{{As genuine representations after extensions}}\label{as_genuine_representations_after_extensions} Alternatively, one may consider the \hyperlink{RelationToGenuineRepresentations}{above} diagram \begin{displaymath} \itexarray{ & & \mathbf{B}GL(V) &\longrightarrow& \ast \\ & & \downarrow && \downarrow \\ \mathbf{B}G &\stackrel{\mathbf{B}\rho}{\longrightarrow}&\mathbf{B}PGL(V) &\stackrel{c}{\longrightarrow}& \mathbf{B}^2 \mathbb{K}^\times } \end{displaymath} and form the further [[pullback]] along $\mathbf{B}\rho$. By the [[pasting law]] this is (the [[delooping]] of) the [[group extension]] $\hat G$ of $G$ which is classified by $c(\rho)$: \begin{displaymath} \itexarray{ \mathbf{B}\hat G & \stackrel{\mathbf{B}\tilde \rho}{\longrightarrow} & \mathbf{B}GL(V) &\longrightarrow& \ast \\ \downarrow & & \downarrow && \downarrow \\ \mathbf{B}G &\stackrel{\mathbf{B}\rho}{\longrightarrow}&\mathbf{B}PGL(V) &\stackrel{c}{\longrightarrow}& \mathbf{B}^2 \mathbb{K}^\times } \end{displaymath} This way the projective representation $\rho$ of $G$ induces a genuine linear representation $\tilde \rho$ of $\hat G$. One finds (this is a special case of the general discussion at [[twisted infinity-bundle]]) that this constitutes an equivalence between projective representations of $G$ and genuine representations of $\hat G$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[projectively flat connection]] \end{itemize} [[!redirects projective representations]] \end{document}